
1

Chess Review
May 11, 2005
Berkeley, CA

Formal Semantics of Metamodeling
Frameworks
Ethan Jackson
ISIS, Vanderbilt University

Semantic Anchoring Infrastructure
Kai Chen
ISIS, Vanderbilt University

Semantics of Metamodeling

Chess Review, May 11, 2005 2

Metamodels As Formal Objects

Pumping Lemma

If it is accepted
by the DFA

?
?

If Graph structure, type structure,
containment, aspects, etc… are valid

Is a string in
the language?

Is a model
well-formed?

2

Chess Review, May 11, 2005 3

Denotational Structural Semantics

Set of all Realizations

1. Define an algebraic structure that is rich enough
to express all of the modeling concepts. (e.g. a
graph with typed vertices and edges). All
realizations form a set.

2. Define constraints on this set so that
only valid models are included

3. A metamodel carves out a subset of
this valid space.

Valid Model

Invalid Model

4. A meta-metamodel exists if it is a
metamodel that carves out the set of
all metamodels

Chess Review, May 11, 2005 4

Tailoring the Semantics

Topological Layer

Object Instantiation Layer

Extension Layer

Metamodel
Constraints

Metamodeling
constraints

3

Chess Review, May 11, 2005 5

The Layered Approach
By choosing a layer, one chooses the set of concepts that naturally suite
the semantic domain.

1

2
3

4 5

1
Start

2 3
Accept

4 5

a/b
c/d

e/f

a/f

1
Start

2 3
Accept

a/b
c/d

e/f

4 5a/f

Chess Review, May 11, 2005 6

Layer Preservation

Layers progressively adds information. This is stated formally as layer
preservation.

4

Chess Review, May 11, 2005 7

Applications

Giotto Metamodel is a formal object that
simultaneously describes a modeling
environment and a structural semantics.

Automatically
generated

Trivial bijective mapping
Automatically
generated

Environment is expressive

MoC is descriptive, yet “baggage-free” because it
builds off of the formal definition of the metamodel.

The semantics of the metamodeling
framework need not be reproduced,
but just referenced.

The semantics of the metamodeling
framework need not be reproduced,
but just referenced.

Additional semantics
that utilize the

formal structures,
Proofs

Additional semantics
that utilize the

formal structures,
ProofsASML

Textual

Chess Review, May 11, 2005 8

Semantic Anchoring Infrastructure

• Semantic Unit
– A well-defined DSML that captures the semantics of a

particular model of computation.
• Semantic Anchoring

– Define the semantics of a DSML through the
transformational specification to a semantic unit.

AsmL Behavioral
Semantic Spec

Transformational
Specification

Transition
Engine

DSML
Metamdoel

GME GME
ToolsetToolset

GReAT ToolGReAT Tool

Model
Checker

Model
Simulator

Test Case
GeneratorMc

XML
Parser

AsmL Spec AsmL ToolsAsmL Tools

InstanceGenerate

Domain Model AsmL Model
(XML Format)

AsmL
Metamodel

AsmL
Data Model

5

Chess Review, May 11, 2005 9

A Semantic Unit for Timed
Automata Based Modeling Language

• Common semantic domain for varied timed
automata based modeling languages.
– Guard
– Priority
– Synchronization

S

C

A

MC

MS

Timed Automata
(AsmL Supported Semantics)

MoC Variants

Model
Checker

Model
Simulator

Test Case
Generator

AsmL Tools

IF Lang.IF Lang.

Transformation
T

Semantic
Anchoring

UUPPAAL PPAAL Lang. Lang.
Kronos Lang. Kronos Lang.

MoC Semantic Unit

GReAT ToolGReAT Tool

GME GME
ToolsetToolset

S

C

A

MC

MS

Chess Review, May 11, 2005 10

FSM Metamodel

6

Chess Review, May 11, 2005 11

FSM Model

Chess Review, May 11, 2005 12

Metamodel for AsmL Abstract Data
Model

7

Chess Review, May 11, 2005 13

AsmL Abstract Data Model

Chess Review, May 11, 2005 14

AsmL Behavioral Semantic
Specifications

8

Chess Review, May 11, 2005 15

Transformational Specifications

Chess Review, May 11, 2005 16

AsmL Data Model in XML Format

9

Chess Review, May 11, 2005 17

AsmL Data Model

Chess Review, May 11, 2005 18

Distributed Real-time System (1)

• Abstract
Syntax (1)

• Component
Interactions

10

Chess Review, May 11, 2005 19

Distributed Real-time System (2)

• Abstract
Syntax (2)

• Component
Behaviors

Chess Review, May 11, 2005 20

Distributed Real-time System (3)

• AsmL Abstract Data Structure
class State
id as String
option as STATEOPTION

class Transition
id as String
option as TRANSITIONOPTION

abstract class TimeAutomata
var currentState as State? = null
abstract property states as Set of State
abstract property transitions as Set of Transition
abstract property localClocks as Set of Clock
abstract property outTransitions as Map of <State, Set of Transition>
abstract property srcState as Map of <Transition, State>
abstract property dstState as Map of <Transition, State>
abstract property syns as Map of <Transition, (SignalChannel, SYNMODE)>

abstract class DRTSystem
abstract property timeAutomatas as Set of TimeAutomata
abstract property signalChannels as Set of SignalChannel
abstract property signalRouters as Set of SignalRouter
var activeAutomatas as Set of TimeAutomata = {}

11

Chess Review, May 11, 2005 21

Distributed Real-time System (4)

• AsmL Behavior Semantics Specification
//In the current clock time, whether the time guard of an transition is true
IsTimeGuardTrueNow (t as Transition) as Boolean
require t in me.transitions
step return TimeGuard (t)

//In the next clock time, whether the time guard of an transition is true
IsTimeGuardTureNext (t as Transition) as Boolean
require t in me.transitions
step
forall c in globalClocks
c.Go ()

forall c in me.localClocks
c.Go ()

step
let next = IsTimeGuardTrueNow (t)

step
forall c in globalClocks
c.Back ()

forall c in localClocks
c.Back ()

step return next

Chess Review, May 11, 2005 22

IF

• Asynchronous
Component
Interaction

• Simulation

• Verification

12

Chess Review, May 11, 2005 23

UPPAAL

• Synchronous
Component
Interaction

• Simulation

• Verification

Chess Review, May 11, 2005 24

The End

Questions?

