Composable Code Generation for Distributed Giotto

Tom Henzinger
Christoph Kirsch
Slobodan Matic

Chess Review
May 11, 2005
Berkeley, CA

Motivation

- Automotive software
 - Suppliers develop sw components,
 Manufacturer integrates
 - Mass production : optimality
- Aircraft software
 - Federated approach replaced by
 Integrated Modular Avionics
- Compositional design
 - Scale down problem
 - Reuse components
 - Preserve desired properties by composition

[HKK04]
Real-time + Composability

- Distributed platform by *distributed* compilation
- Giotto concurrency abstraction
 - Logical Execution Time
- Verification
 - Efficient
 - Automatic
- Purely software time-triggered paradigm
 - Compilation
 - Program analysis

Distributed Code Generation Model

integrator (OEM)
suppliers
hosts (ECUs)
Distributed Code Generation Model

1

integrator

specs

Distributed Code Generation Model

2

suppliers

code
Giotto Framework

- Task instance
 - Start and stop times defined by period
 - Output available at stop time
- Unit delay
 - Deterministic timing and functional behavior
 - Easy multi-modal schedulability test
 - Temporal composability

```
mode m1 () period 8 {
  actfreq 2 do MixPlayer();
  taskfreq 1 do Analyzer (Mixer);
  taskfreq 2 do Mixer(Generator);
  taskfreq 1 do Generator();
}
```

Giotto Abstraction

Input

Sensor Driver

Task

Actuator Driver

Output

start

task period

stop
Giotto Implementation

Sensor Driver \[\rightarrow\] Msg \[\rightarrow\] Task \[\rightarrow\] Msg \[\rightarrow\] Actuator Driver

start \[\rightarrow\] task period \[\rightarrow\] stop

E and S Machine

- **Embedded Machine - E code**
 - environment interaction
 - task release
- **Scheduling Machine - S code**
 - task execution
 - communication schedule
E and S Machine

- Giotto code
- Giotto compiler
 - E code
 - S code
 - E machine
 - S machine
- Environment interaction
- Task release
- Task execution
- Communication schedule

Schedule-Carrying Code

- Giotto code
- Distributed Giotto compiler
 - E code
 - SCC
 - S code
 - E machine
 - S machine
System Specification

- Supplier s on host h:
 - Component specification
 - E code module $E_{s,h}$
 - Timing interface:
 - set of time intervals $T_{s,h}$
 - where s may use h
 - where s may send
 - Integrator ensures interface feasibility

Schedulability

- S code module $S_{s,h}$
 - even with interfaces EDF optimal
 - Latency optimal
 - multiple intertask processors + communication \Rightarrow NP-complete
 - With LET assumption
 - Task dependency and distribution not hard
LET and Temporal Partitioning

- Increase execution time of t_1
- Add new task t_4

SCC Properties

- SCC module
 - is **time-safe** if no driver accesses a *released* task before *completion*
 - complies with timing interface if all tasks are *executed* in time intervals
 - Platform dependent properties (wcet)
 - Deadlines specified in the E code

- SCC module - state transition system
 - Two properties - safety properties
Verification

• Giotto program G
 - \(n \): bound on all numbers in G
 - \(g_{s,h} \): size of Giotto component implemented by supplier \(s \) on host \(h \)

• Correctness
 To check if a distributed SCC program \(P \) correctly implements Giotto program \(G \) it is enough to check if each \(P_{s,h} \) complies to \(T_{s,h} \) and is time-safe

• Complexity
 If a given \(P_{s,h} \) complies to \(T_{s,h} \) and is time-safe can be checked in \(O(g_{s,h} n) \) time

Verification

• Module modification
 - task invocation, interaction - \(E_{s,h} \)
 - schedule - \(S_{s,h} \)
 - execution time - \(\text{wcet} \)

\(O(g_{s,h} n) \)
Implementation

- **Distributed audio mixer application**
 - File read, processed, analyzed and reproduced
 - Two hosts and three suppliers

- **PCs running Real-time Linux, Ethernet**
 - TDMA on top of software-based synchronization, 2.86Mb/s
 - every 4ms 44 samples (11Khz) processed and transmitted
 - overhead 3.7%: synchronization 25µs, virtual machine 12µs