Composable Code Generation for Distributed Giotto

Tom Henzinger Christoph Kirsch Slobodan Matic

Chess Review May 11, 2005 Berkeley, CA

Motivation

- Automotive software
 - Suppliers develop sw components, Manufacturer integrates
 - Mass production : optimality
- Aircraft software
 - Federated approach replaced by Integrated Modular Avionics
- Compositional design - Scale down problem
 - Reuse components
 - Preserve desired properties by composition

[HKK04]

Real-time + Composability

- · Distributed platform by distributed compilation
- · Giotto concurrency abstraction
 - Logical Execution Time
- Verification
 - Efficient
 - Automatic
- Purely software time-triggered paradigm
 - Compilation
 - Program analysis

Distributed Code Generation Model

Giotto Framework mode m1 () period 8 { AudioSampler MixPlayer actfreq 2 do MixPlayer(); taskfreq 1 do Analyzer (Mixer); taskfreq 2 do Mixer(Generator); Mixer Generato Analyzes taskfreq 1 do Generator(); Task instance - Start and stop times defined by period Mixe - Output available at stop time Analyze Unit delay Deterministic timing and functional behavior - Easy multi-modal schedulability test - Temporal composability Chess Review, May 11, 2005 9

System Specification

- Supplier s on host h:
 - Component specification

• E code module $E_{s,h}$

- Timing interface:

- set of time intervals $T_{s,h}$
 - where s may use hwhere s may send

 T_{S_1, h_1} T_{S_2, h_2} T_{S_3, h_2}

call(copy[MixSound])
call(copy[StringSound])

release(1; Mixer; 1) release(1; [MixSound]) future($4,E_{s,h}(m_1,1)$)

 $E_{s,h}(m_1,0)$:

· Integrator ensures interface feasibility

Chess Review, May 11, 2005 15

Schedulability

• S code module $S_{s,h}$ even with interfaces EDF optimal

 $S_{s,h}(m_1,0)$: idle(1) call(InDrv2) dispatch(Mixer; 2) idle(3) dispatch([MixSound]; 4)

Latency optimal

multiple intertask processors + communication ⇒

⇒ NP-complete

- · With LET assumption
 - Task dependency and distribution not hard

Chess Review, May 11, 2005 16

SCC Properties

- · SCC module
 - is time-safe if

no driver accesses a released task before completion

- complies with timing interface if

all tasks are executed in time intervals

- · Platform dependent properties (wcet)
- · Deadlines specified in the E code

- SCC module state transition system
 - Two properties safety properties

Verification

Giotto program G

- n: bound on all numbers in G

- $g_{s,h}$: size of Giotto component implemented by supplier s on host h

Correctness

To check if a distributed SCC program \boldsymbol{P} correctly implements Giotto program \boldsymbol{G} it is enough to check if each $P_{s,h}$ complies to $T_{s,h}$ and is time-safe

· Complexity

If a given $P_{s,h}$ complies to $T_{s,h}$ and is time-safe can be checked in

 $O(g_{s,h}n)$ time

Chess Review, May 11, 2005 19

Verification

- Module modification
 - task invocation, interaction E_{sh}
 - schedule $S_{s,h}$
 - execution time wcet

 $O(g_{s,h} n)$

Implementation

- · Distributed audio mixer application
 - File read, processed, analyzed and reproduced
 - Two hosts and three suppliers

- · PCs running Real-time Linux, Ethernet
 - TDMA on top of software-based synchronization, 2.86Mb/s
 - every 4ms 44 samples (11Khz) processed and transmitted
 - overhead 3.7%: synchronization $25\mu s$, virtual machine $12\mu s$

Chess Review, May 11, 2005 21