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Applications

• Surveillance and security
• Search and rescue
• Disaster and emergency response system
• Pursuit evasion games [Schenato, Oh, Sastry, ICRA’05]

• Inventory management 
• Spatio-temporal data collection 
• Visitor guidance and other location-based 

services
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Outline

• Multiple-target tracking problem
• Markov chain Monte Carlo data association 

(MCMCDA) algorithm
• Hierarchical multiple-target tracking 

algorithm for sensor networks
• Distributed multiple-target tracking using 

camera networks
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Multiple-Target Tracking Problem
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Solution Space of 
Data Association Problem

(a) Observations Y

(b) Example of 
a partition ω of Y
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Two Possible Solutions to 
Data Association Problem
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Outline

• Multiple-target tracking problem
• Markov chain Monte Carlo data association 

(MCMCDA) algorithm 
– [Oh, Russell, Sastry, CDC 2004]

• Hierarchical multiple-target tracking 
algorithm for sensor networks

• Distributed multiple-target tracking using 
camera networks
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Markov Chain Monte Carlo (MCMC)

• A general method to generate samples from a 
complex distribution

• For some complex problems, MCMC is the only 
known general algorithm that finds a good 
approximate solution in polynomial time    
[Jerrum, Sinclair, 1996]

• Applications:
– Complex probability distribution integration problems
– Counting problems (#P-complete problems)
– Combinatorial optimization problems

• Data association problem has a very complex 
probability distribution
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MCMC Data Association (MCMCDA)

• Start with some initial state ω1 2 Ω

Ω
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MCMC Data Association (MCMCDA)

• Propose a new state ω’ » q(ωn,ω’)
• q: Ω £ 2Ω ! [0,1], proposal distribution q(ωn,ω’) = 

probability of proposing ω’ when the chain is in ωn

propose
ωn ω’

• q(ωn,ω’) is determined by 8 moves:
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MCMC Data Association (MCMCDA)

• If accepted, 

• If not accepted, 

ωn+1=ω’

ωn+1=ωn

• Accept the proposal with probability 

π(ω) = P(ω|Y), Y = observations
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MCMC Data Association (MCMCDA)

• Repeat it for N steps

Ω
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MCMC Data Association (MCMCDA)

But how fast does it converge?
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Polynomial-Time Approximation to 
Joint Probabilistic Data Association*

* [Oh,Sastry, ACC 2005]
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MCMCDA Highlights

• Optimal Bayesian filter in the limit 
• Provides approximate solutions to both MAP and MMSE
• Avoids the enumeration of all feasible events

• Single-scan MCMCDA approximates JPDA in polynomial time with 
guaranteed error bounds [Oh,Sastry, ACC 2005] 

• Outperforms Multiple Hypothesis Tracking algorithm [Oh, 
Russell,Sastry, CDC 2004]

• Statistically sound approach to initiate and terminate tracks 
– Can track an unknown number of targets
– Suitable for an autonomous surveillance system

• Easily distributed and suitable for sensor networks
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Outline

• Multiple-target tracking problem
• Markov chain Monte Carlo data association 

(MCMCDA) algorithm
• Hierarchical multiple-target tracking 

algorithm for sensor networks
– [Oh, Schenato, Sastry, ICRA 2005]

• Distributed multiple-target tracking using 
camera networks
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• Limited capabilities of a sensor node
– Limited supply of power
– Short communication range
– High transmission failure rates
– High communication delay rates
– Limited amount of memory and computational 

power
• Inaccuracy of sensors

– Short sensing range
– Low detection probabilities
– High false detection probabilities

• Inaccuracy of sensor network localization

Challenges in Sensor Networks
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Hierarchical MTT Algorithm

• Autonomous 
– Ability to initiate and terminate 

an unknown number of tracks 
– Required for distributed tracking

• Low computation and memory

• Robust against
– transmission failures
– communication delays 
– localization error

• Scalable

• Low communication load Local data fusion

MCMCDA

Hierarchy

Requirements Hierarchical MTT
(HMTT)
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Algorithm Overview

• Assume a few supernodes, e.g., Intel’s Stargate, iMote2
– Longer communication range

• Regular sensors are grouped by supernodes

1. Sensors detect an object and fuse local data
2. Fused data are transmitted to the nearest supernode
3. Each supernode estimates tracks by running the online 

MCMCDA
4. Supernodes exchange tracks with each other
5. Track-level data association by MCMCDA to resolve 

duplicate tracks
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Simulation

• To measure the performance of the algorithm 
against localization error, transmission failure 
and communication delay

• Setup
– 100x100 grid sensor field
– Single supernode at the center
– Separation between neighboring nodes = 1 unit length
– Signal strength sensor model (noisy range data only)
– Data fusion: weighted sum of sensor positions of  

neighboring sensors with overlapping sensing regions 
(weighted by signal strengths)
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Robustness against Localization Error

• Gaussian localization error
• No performance loss up to the average localization 

error of .7 times the separation between sensors
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Robustness against Transmission Failures

• An independent transmission failure model is assumed
• Tolerates up to 50% lost-to-total packet ratio
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Robustness against Communication Delays

• An independent communication delay model is assumed
• Tolerates up to 90% delayed-to-total packet ratio
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Experiment Results

Scenario Execution of HMTT

Tracks from HMTT

detection potential tracks
estimated tracks
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Outline

• Multiple-target tracking problem
• Markov chain Monte Carlo data association 

(MCMCDA) algorithm
• Hierarchical multiple-target tracking 

algorithm for sensor networks
• Distributed multiple-target tracking using 

camera networks
– In progress
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Camera Networks

• Concept: sensor network of cameras
• Benefits

– Less installation cost (no wires)
– Rich set of measurements (color, shape, position, etc.)
– Reliable verification of an event

• Applications
– Surveillance and security
– Situational awareness for support of decision making
– Emergency and disaster response
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Cory Hall Camera Network Testbed

• DVR on 1st floor operations room
• 4 omnicams/12 perspective cameras, 

focus on 2 busier hallways 
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Video
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Conclusions

• Multiple-target tracking is a challenging problem
• It gets more challenging when data is collected via 

unreliable networks such as sensor networks
• MCMCDA is an optimal Bayesian filter in the limit and 

provides superior performance
• Hierarchical multiple-target tracking algorithm

– No performance loss up to the average localization error of .7 
times the separation between sensors

– Tolerates up to 50% lost-to-total packet ratio 
– Tolerates up to 90% delayed-to-total packet ratio

• Camera networks 
– Presents a new set of challenges
– Hierarchical multiple-target tracking algorithm is applied to 

track multiple targets in a distributed manner


