Conceptual Issues

- Given a certain wireless sensor network can we successfully design a particular application?
- How does the application impose constraints on the network?
- Can we derive important metrics from those constraints?
- How do we measure network parameters?
What can you do with a sensor network?

- Literature provides key asymptotic results
- We are interested in answering different semantic questions, e.g.:
 - At the algorithmic level:
 - How much packet loss can a tracking algorithm tolerate?
 - At the network level:
 - How many objects can a particular sensor network reliably track?

Wireless Sensor Networks

- It's a network of devices:
 - Many nodes: 10^3-10^5
 - Multi-hop wireless communication with adjacent nodes
 - Cheap sensors
 - Cheap CPU

- Issues w/ Sensor Networks and Data Networks?
 - Random time delay
 - Random arrival sequence
 - Packet loss
 - Limited Bandwidth
Control Applications with Sensor Networks

Pegs
HVAC systems
Power Grids
Human body

Control and communication over Sensor Networks

Control inputs $u(t)$
Observations $y(t)$
Computational unit
Experimental results: Pursuit evasion games

Problem Statement

Given a control systems where components, i.e. plant, sensors, controllers, actuators, are connected via a specified communication network, design an “optimal” controller for the system.
Outline

• Problem Statement
• Optimal Estimation with intermittent observations
• Optimal control with both intermittent obs and control
 – TCP-like protocols
 – UDP-like protocols
• Conclusions

Modeling

LGQ scenario for lossy network

plant \(y(t) \)

\(\nu(t) \)

Network \(\gamma(t) \)

\(\hat{y}(t) \)

estimator + controller

Bernoulli independent switches
Assumptions

- **System:**
 - Discrete time linear time invariant
 - Additive white gaussian noise on both the dynamics and the observation
- **Communication network:**
 - Packets either arrive or are lost within a sampling period following a bernoulli process.
 - A Delay longer than sampling time is considered lost.
 - Packet Acknowledgement depends on the specific communication protocol

Optimal estimation with intermittent observations

- **Main Results (IEEE TAC September 2004)**
- **Kalman Filter is still the optimal estimator**
- **We proved the existence of a threshold phenomenon:**
 \[
 \lim_{t \to \infty} E[P_t] = \infty \quad \text{for} \quad 0 \leq \bar{\gamma} \leq \gamma_c \quad \text{and some initial condition} \quad P_0 \geq 0
 \]
 \[
 E[P_t] \leq M P_0 \quad \forall t \quad \text{for} \quad \gamma_c < \bar{\gamma} \leq 1 \quad \text{and any initial condition} \quad P_0 \geq 0
 \]
 \[
 1 - \frac{1}{(\lambda_{max})^2} = \gamma_{min} \leq \gamma_c \leq \gamma_{max}
 \]
Optimal control with both intermittent observations and control packets

- What is the minimum arrival probability that guarantees "acceptable" performance of estimator and controller?
- How is the arrival rate related to the system dynamics?
- Can we design estimator and controller independently?
- Are the optimal estimator and controllers still linear?
- Can we provide design guidelines?

Control approach

- The problem of control is traditionally subdivided in two sub-problems:
 - Estimation
 - Allows to recover state information from observations
 - Control
 - Given current state information, control inputs are provided to the actuators
- The separation principle:
 - allows, under observability conditions, to design estimator and controller independently.
- If separation principle holds, optimal estimator (in the minimum variance sense) and optimal controller (LQG) are linear and independent
LQG control with intermittent observations and control

We'll group all communication protocols in two classes:
TCP-like (acknowledgement is available)
UDP-like (acknowledgement is absent)

LQG mathematical modeling

\[
x_{t+1} = Ax_t + \nu_t Bu_t + w_t \\
y_t = Cx_t + \nu_t, \quad \text{cov}(\nu_t) = \gamma_t R + (1 - \gamma_t)\sigma^2 I \\
J_N = \mathbb{E}[x_N'W_Nx_N + \sum_{t=0}^{N-1} (x_t'W_t x_t + \nu_t u_t'U_t u_t)] \\
\gamma, \nu \sim \text{Bernoulli, indep.}
\]

Minimize \(J_N \) subject to
\[
\begin{align*}
u_t &= k_t(I_t); \quad &I_t &= \{ y_0, \ldots, y_t, \gamma_0, \ldots, \gamma_t, \nu_0, \ldots, \nu_{t-1} \} \\
\end{align*}
\]

- TCP – Transmission Control Protocol
 - PRO: feedback information on packet delivery
 - CONS: more expensive to implement

- UDP – User Datagram Protocol
 - PRO: simpler communication infrastructure
 - CONS: less information available
Estimator Design

TCP

Prediction Step
\[\hat{x}_{t+1|t} = A\hat{x}_{t|t} + \nu_t B u_t \]
\[P_{t+1|t} = AP_{t|t}A' + Q \]

UDP

Prediction Step
\[\hat{x}_{t+1|t} = A\hat{x}_{t|t} + \bar{\nu} B u_t \]
\[P_{t+1|t} = AP_{t|t}A' + Q + \bar{\nu}(1 - \bar{\nu}) B u_t' B \]

Correction Step
\[\hat{x}_{t+1|t+1} = \hat{x}_{t+1|t} + \gamma_{t+1} K_{t+1}(y - C\hat{x}_{t+1|t}) \]
\[P_{t+1|t+1} = P_{t+1|t} - \gamma_{t+1} P_{t+1|t}C'(CP_{t+1|t}C' + R)^{-1}CP_{t+1|t} \]
\[K_{t+1} = P_{t+1|t}C'(CP_{t+1|t}C' + R)^{-1} \]

LQG Controller Design: TCP case

Solution via Dynamic Programming:

1. Compute the Value Function \(t=N \) and move backward
2. Find Infinite Horizon by taking \(N \mapsto +1 \)

\[V_t(x_t) = \text{minimum cost-to-go if in state } x_t \text{ at time } t \]
\[V_N(x_N) \Deltaq E[x_N' W_N x_N \mid \mathcal{F}_N] \]
\[V_k(x_k) \Deltaq \min_{u_k} E[x_k' W_k x_k + \nu_k u_k' U_k u_k + V_{k+1}(x_{k+1}) \mid \mathcal{F}_k] \]
\[J_N = E[x_N' W_N x_N + \sum_{t=0}^{N-1} (x_t' W_t x_t + \nu_t u_t' U_t u_t)] \]
\[J_N^* = V_0(x_0) \]
We can prove that for TCP the value function can be written as:

\[V_t(x_t) = \mathbb{E}[x_t^t S_t x_t | I_t] + c_t \]

with:

\[S_N = W_N, \quad c_N = 0 \]

\[S_t = A'S_{t+1}A + W_t^L - \bar{p}A'S_{t+1}B(W_t + B'S_{t+1}B)^{-1}BS_{t+1}A \]

\[c_t = \mathbb{E}[c_{t+1} | I_t] + \text{trace}(A'S_{t+1}A + W_t - S_t)P_t[1] + \text{trace}(S_{t+1}Q) \]

Minimization of \(v(t) \) yields:

\[u_t = -(W_t + B'S_{t+1}B)^{-1}B'S_{t+1}A\tilde{x}_t[t] \]

\[= -L_k\tilde{x}_t[t] \]

\[J_N = x_0^t S_0 x_0 + \sum_{t=0}^{N-1} \left(\text{trace}(A'S_{t+1}A + W_t - S_t)\mathbb{E}[P_t[1]] + \text{trace}(S_{t+1}Q) \right) \]

Stochastic variable !!
Infinite Horizon: TCP case

LQG averaged cost \(J_N \) is bounded for all \(N \) if the following Modified Algebraic Riccati Equations exist:

\[
S_\infty = A'S_\infty A + W_t - \bar{v}A'S_\infty B(W_t + B'S_\infty B)^{-1}B S_\infty A \\
\hat{P}_\infty = A\hat{P}_\infty A' + Q - \bar{\gamma} \hat{A}\hat{P}_\infty C'(C\hat{P}_\infty C' + R)^{-1}C\hat{P}_\infty A'
\]

Special Case: LQG with intermittent observations, \(\nu_t = 1, \forall t \)

\[
S_\infty = A'S_\infty A + W_t - \bar{v}A'S_\infty B(W_t + B'S_\infty B)^{-1}B S_\infty A \\
\hat{P}_\infty = A\hat{P}_\infty A' + Q - \bar{\gamma} \hat{A}\hat{P}_\infty C'(C\hat{P}_\infty C' + R)^{-1}C\hat{P}_\infty A'
\]
LQG Controller Design: UDP case

Scalar system, i.e. $x \in \mathbb{R}^2$

\[
x_{t+1} = x_t + v_t u_t \\
y_t = x_t + v_t,
\]

\[
\text{cov}(v_t) = \gamma_t 1 + (1 - \gamma_t) \sigma^2 I
\]

\[
J_N = E[\sum_{t=0}^N |x_t|^2]
\]

\[
\mathcal{I}_t = \{y_t, \gamma_t, \ldots\}
\]

$t=N$

\[
V_N(x_N) = E[x_N^2]
\]

$t = N-1$

\[
V_{N-1}(x_{N-1}) = \min_{x_{N-1}} E[x_N^2 + V_N(x_N) \mid \mathcal{I}_{N-1}]
\]

\[
= \min_{x_{N-1}} E[x_N^2 \mid \mathcal{I}_{N-1}] + \gamma_{N-1}
\]

\[
= \min_{w_{N-1}} (E[x_{N-1}^2 + x_{N-1}^2 \mid \mathcal{I}_{N-1}] + \gamma_{n-1} + 2\gamma_{n-1} x_{N-1} \mathcal{I}_{N-1}^N - 1)
\]

\[
= 2E[x_{N-1}^2 | \mathcal{I}_{N-1}] - \gamma_{N-1} x_{N-1} \mathcal{I}_{N-1}^N - 1
\]

\[
u_{N-1} = \nu_{N-1} \mathcal{I}_{N-1}^N - 1
\]

\[
= (2 - \nu) E[x_{N-1}^2 | \mathcal{I}_{N-1}] + \nu \mathcal{I}_{N-1}^N - 1
\]

LQG Controller Design: UDP case

$t = N-2$

\[
V_{N-2}(x_{N-2}) = \min_{u_{N-2}} E[x_{N-2}^2 + V_{N-1}(x_{N-1}) \mid \mathcal{I}_{N-2}]
\]

\[
= \min_{u_{N-2}} (2\nu - \nu \mathcal{I}_{N-2}^N - 1 + \nu \mathcal{I}_{N-2}^N - 1 + \nu \mathcal{I}_{N-2}^N - 1 + \nu \mathcal{I}_{N-2}^N - 1)
\]

\[
= \min_{u_{N-2}} \left(\frac{1}{P_{N-2}^N + \nu (1 - \nu) u_{N-2}^2 + 1} \right)
\]

\[
u_t^* = k_t(y_t, \ldots, y_0, \gamma_t, \ldots, \gamma_0, P_0, x_0)
\]

NONLINEAR FUNCTION OF INFORMATION SET \mathcal{I}_t
Without loss of generality I can assume $C=I$

prediction

$$P_{t+1|t} = AP_{t|t}A' + Q + \tilde{\nu}(1-\tilde{\nu})Bu_tu_t'\tilde{B}$$

correction

$$P_{t+1|t+1} = P_{t+1|t} - \gamma_{t+1}P_{t+1|t}C'(CP_{t+1|t}C' + R)^{-1}CP_{t+1|t}$$

$$K_{t+1} = (1 - \gamma_{t})P_{t+1|t}$$

$$\tilde{x}_{t+1|t+1} = (1 - \gamma_{t+1})\tilde{x}_{t+1|t} + \gamma_{t+1}y_{t+1}$$

UDP special case:

C invertible, $R=0$

It is possible to show that:

$$V_k(x_t) = E[x_t' S_t x_t | I_t] + \text{trace}(T_t P_{t|t}) + \text{trace}(D_t Q)$$

$$u_t^* = -(U_t + B'(S_{t+1} + (1-\tilde{\nu})(1-\tilde{\gamma})T_{t+1})B)^{-1}B'S_{t+1}A\, \tilde{x}_{t|t}$$

$$S_N = W_N, \quad T_N = 0, \quad D_N = 0$$

$$S_t = A'S_{t+1}A + W_t - \tilde{\nu}A'S_{t+1}B(U_t + B'(S_{t+1} + (1-\tilde{\nu})(1-\tilde{\gamma})T_{t+1})B)^{-1}B'S_{t+1}A$$

$$T_t = (1-\tilde{\gamma})A'T_{t+1}A + A'S_{t+1}A + W_t - S_t$$

$$D_t = D_{t+1} + (1-\tilde{\gamma})T_{t+1} + S_{t+1}$$
UDP Infinite Horizon:
C invertible, $R=0$

It is possible to show that:

Necessary condition for boundedness:

$$\hat{\nu} \hat{\gamma} > 1 - \frac{1}{\lambda_{max}(A)^2}$$

Sufficient only if B invertible

Conclusions

- Closed the loop around sensor networks
- General framework applies to networked control system
- Solved the optimal control problem for full state feedback linear control problems
- Bounds on the cost function
- Transition from state boundedness to instability appears
- Critical network values for this transition
Thank you !!!

For more info: sinopoli@eecs.berkeley.edu

Related publications:
• Kalman Filtering with Intermittent Observations
 - IEEE TAC September 2004
• Time Varying Optimal Control with Packet Losses
 - IEEE CDC 2004
• Optimal Control with Unreliable Communication: the TCP Case
 - ACC 2005
• LQG Control with Missing Observation and Control Packets
 - IFAC 2005

Chess Review
May 11, 2005
Berkeley, CA