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Background and Outline

• Tools for the analysis and control of hybrid systems
– Reachable set calculations
– Approximation algorithms for trajectory optimization in hybrid 

systems

• This talk:  identifying hybrid models from data
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ETMS/UAV flight data
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[UAV data with Teo and Jang; ETMS data from McNally (Ames)] 

ETMS data with synthesized flight

[with Alex Bayen, Pascal Grieder]
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[Courtesy Dali Ma, 
Stanford University]

[Rousset, et al., Genes 
Dev 15 658-71, 2001]

proximal distal

Drosophila wing epithelium:  Dsh protein

[Amonlirdviman, Khare, Tree, Chen, Axelrod, Tomlin Science ’05]

Hybrid System Model
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Continuous state parameters:

Mode

Transition matrix:

Stochastic Linear Hybrid System

We assume that 

Measurement matrices C are known

System has a minimum (known) dwell time, Td in each 
mode

Typical system behavior is manifested in the available data 
sets

Mode transitions are independent of the continuous state

Mode transitions are probabilistic and Markovian

Assumptions on system behavior
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Maximum Likelihood Hybrid Model

Switching points

Labels (modes)

l1 = 2 l2 = 1 l3 = 2 lNs = 1
s1= 1 s2 s3 sNs T

t

• Data sequence
• discrete modes
• segments

Continuous model       ;  Discrete model

Maximum Likelihood Model

Given the continuous output of the system          we would 
like to compute the maximum likelihood hybrid system 

model.

where      is the likelihood function we would like to maximize
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Assume an initial continuous model (Θ(0)) and an initial 
discrete model (D(0)).

iterate
Step 1: Find the globally optimal segmentation points (S) 

and their labels (L) assuming the model parameters of the 
current iteration (k). Update switching matrix, M. This 
gives us the maximum likelihood model D(k+1).

Step 2: Fit maximum likelihood models into the segmented 
time sequences, i.e., for the computed {S,L}, fit the best 
Θ(k+1).

until convergence to a local maximum

Parameter Inference Algorithm

where

• Reflects how well model tracks the continuous state
• Easy to compute (Kalman filter recursions) 

Likelihood function
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• Finding the optimal segmentation is potentially intractable

S

l2 = 2l1 = 1 lN = 2l3= 1
S

s1=1 s2 s3 sN T t
S

l2 = 2l1 = 1 l3 = 1 lN = 1
S

s1=1 s2 s3 sN T t

O(NT) possible segmentations!

S

l1 = 2 l2 = 1 l3 = 2 lN = 1
S

s1=1 s2 s3 sN T t

Optimal Segmentation

Finding optimal segmentation is potentially intractable (O(NT))

Let                  max. derived by dividing         into n parts  

t1 bl = LastModen-1(b-1) T
sn-1 i

Mli

Step 1:  Optimal segmentation



8

Using this, we can find the best segmentation as the one that 
achieves with complexity O(NT3)

Dynamic Programming Algorithm

• For the optimal segmentation determined in Step 1, we fit the best 
continuous parameters for each mode, by maximizing

where Z is the “complete” data, i.e., both the observed variables (Y) 
and the state variables xk, k=1…n. 

l1 = 3 l2 = 1 l3 = 2
s1=1 s2 s3

t

Mode 3 is best fit to Y1:s -12 Mode 2 is best fit to 
Ys :s  -13 4

Step 2:  Fitting the best continuous model
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Proposed algorithm        local maximum         need initial conditions
We know system stays in a mode for at least Td

We estimate the number of discrete modes in the system (N), the initial 
segmentation, and the initial continuous model. 

Estimate
Actual Measurement

y1

yTd

best model for mode 1

Initialization

• Models for Motion Capture (Li et al.)
• Time Series Analysis (Shumway and Stoffer)
• Hybrid Estimation Algorithms (Bar-Shalom, Blom et al.)
• Observability and Identifiability of Hybrid Systems 

(Vidal, Soatto, Sastry, Bemporad et al., Balluchi et al.) 
• System Identification/ Subspace Identification Methods 

(Ljung, De Moor, Van Overschee, Vidal, Ma)
• Dynamic Textures (Soatto et al.)

Related Work
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Aircraft 2: Blunderer *CSPA: Closely Spaced Parallel Approaches

DragonFly Dual Aircraft Test
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 Dual Aircraft Test Data  − Trajectories

Training data for A/c 1
A/c 1, Mode 1
A/c 1, Mode 3
A/c 1, Mode 2
Training data for A/c 2
Aircraft 2, Mode 1
Aircraft 2, Mode 2
Aircraft 2, Mode 3
Aircraft 2, Mode 4

x
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Aircraft 1 (Evader) 

Aircraft 2 (Blunderer) 

t=18 s. 

t = 20 s. 

t = 39 s. 

Results
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Inferred mode transition sequence:
 Dual Vehicle Flight Test Data

Aircraft 1
Aircraft 2true autopilot command 

(to A/c 1) 
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Application of Proposed Algorithm to
 Dual Aircraft Test Data  − Trajectories

Training data for A/c 1
A/c 1, Mode 1
A/c 1, Mode 3
A/c 1, Mode 2
Training data for A/c 2
Aircraft 2, Mode 1
Aircraft 2, Mode 2
Aircraft 2, Mode 3
Aircraft 2, Mode 4
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Aircraft 2 (Blunderer) 

t=18 s. 

t = 20 s. 

t = 39 s. 

start

Manual pilot

Parallel localizer tracking
a/c 2 blunders

a/c 1 autopilot (evasive maneuver)

a/c 2 ends blunder

Manual pilot takes over a/c 1

Manual pilot takes over a/c 2

Validation
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Hybrid Model Identification for Hold Pattern

Position 
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Holding Pattern Data
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Track data

Hybrid state
estimation

Mode sequence

State Estimation for a Hold Pattern

Summary and new directions
• Dynamic programming algorithm to infer stochastic linear 

hybrid models from time series data
• Tested on UAV and ETMS flight data
• Current work:

–Incorporating dependence on continuous state
–State estimation and identity management
–Applications:

• Time series data from Drosophila (with Jeff Axelrod, Stanford)
• Flight/weather data from NASA (with Nikunj Oza, NASA Ames)
• STARMAC project
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New Testbed:  STARMAC
Stanford Testbed of 
Autonomous Rotorcraft
for Multi-Agent Control 
(STARMAC)
– Quadrotor Design
– Autonomous Control
– Wireless
– Full Onboard Sensing

• IMU, GPS, SODAR

Ground Station
– Mobile User Interface
– Communicates with fleet:  1 to 8 vehicles
– Optional Joystick Interface

STARMAC Flight Tests


