Causality Interfaces and Compositional Causality Analysis

Edited and presented by Rachel Zhou UC Berkeley

Chess Review November 21, 2005 Berkeley, *CA*

Actor-Oriented Design

- Actors are in charge of their own actions.
- Actors interact with each other by exchanging data through ports.
- The patterns of interactions between actors are called *model of computation*.

Object-Oriented

Actor-Oriented

Causality Interfaces

 A special family of behavioral interfaces that capture the causality properties of actors and their connections.

- Useful for determining constructive semantics of compositions under certain models of computation.
 - Synchronous Languages
 - Discrete-Event Models
 - Synchronous Dataflow

Causality Interfaces as Functions

- A function that maps a pair of ports to an element in the dependency set D.
 - For an actor:

$$\delta: P_i \times P_o \to D$$

- For a connector:

$$\delta: P_o \times P_i \to D$$

Dependency Set

 Dependency set D is an ordered set with two binary operators ⊕ and ⊗.

Synchronous Languages

- D = {true, false}, false < true.
- \oplus is logical and, \otimes is logical or.

Discrete-Event Models

- D = $\Re_+ \cup \{\infty\}$, "<" as numerical ordering.
- \oplus is the *minimum* function, \otimes is addition.

Compositional Analysis

 Use ⊗ operator for serial compositions and ⊕ operator for parallel compositions.

$$\delta(p_1, p_4) = \delta(p_1, p_5) \otimes (\delta(p_5, p_2) \otimes \delta(p_2, p_4)$$

$$\oplus \delta(p_5, p_7) \otimes \delta(p_7, p_6) \otimes \delta(p_6, p_3) \otimes \delta(p_3, p_4)$$

Determining Constructive Semantics

- A constructive behavior exists if there exists no port that has an immediate dependency on itself.
- Synchronous Languages
 - $\neg \forall p \in P, \ \delta(p,p) > false$
- Discrete-Event Models
 - $\neg \forall p \in P, \ \delta(p,p) > 0$

Conclusions

- An interface theory for causality interfaces of actors and their composition.
- An algebraic procedure to determine whether a composition has a constructive semantics.
- Applied to synchronous languages and discreteevent models.
- On-going work: synchronous dataflow, continuous time, rendezvous.
- Joint work with Prof. Edward A. Lee and Haiyang Zheng

