Optimal Control of Stochastic Hybrid Systems

Edited and presented by Robin Raffard EECS Berkeley

Chess Review November 21, 2005 Berkeley, *CA*

Introduction - Motivations:

- Present a new method for optimal control of Stochastic Hybrid Systems.
- More flexible than Hamilton-Jacobi, because handles more problem formulations.
- In implementation, up to dimension 4-5 in the continuous state.

Problem Formulation:

Minimize
$$E[f(X)]$$

Subject to $dX_t = u(X_t, m_t)dt + \sigma(X_t, m_t)dB_t$
 $u \in \mathcal{U}$

- $\{B_t \in \mathbb{R}^d : t \geq 0\}$ standard Brownian motion.
- $\{X_t \in \mathbb{R}^n : t \geq 0\}$ continuous state. Solves an SDE whose jumps are governed by the discrete state.
- $\{m_t \in \{1, \dots, M\} : t \geq 0\}$ discrete state: continuous time Markov chain.
- $u: \mathbb{R}^n \times \{1, \dots, M\} \to \mathbb{R}^n$ control.

Applications:

 Engineering: Maintain dynamical system in safe domain for maximum time.

Maximize
$$E[f(X)] = E[\inf_{t \ge 0} \{t : X(t) \notin U\}]$$

Subject to $\frac{dX(t)}{dt} = f(X(t), u(t)) + \sigma(m_t)w(t)$

· Systems biology: Parameter identification.

Minimize
$$E[f(X)] = ||E[CX_T] - E_{\text{observed}}||$$

Subject to $\frac{dX(t)}{dt} = f(X(t), \theta) + \sigma(\theta)w(t)$

· Finance: Optimal portfolio selection

Maximize
$$E[f(X)] = E[\int_0^{+\infty} e^{-\alpha t} r(X_t) dt]$$

Subject to $dX_t = \mu(X_t, t) dt + \sigma(X_t, t) dB_t + dJ_t$

Method: 1st step

Derive a PDE satisfied by the objective function in terms of the generator:

$$L_{u}V(x,m) = \sum_{i=1}^{n} u_{i}(x,m) \frac{\partial V(x,m)}{\partial x_{i}} + \frac{1}{2} \sum_{i,j=1}^{n} (\sigma(x,m)\sigma(x,m)^{T})_{ij} \frac{\partial^{2}V(x,m)}{\partial x_{i}\partial x_{j}} + \sum_{k=1}^{M} \lambda_{mk}(x)V(x,k), \quad \forall x \in \mathbb{R}^{n}, \ \forall m = 1,\dots,M.$$

• Example 1:

If
$$V(x) = E^x \left[\int_0^\infty e^{-\alpha s} r(X_s) ds \right]$$

then $L_u V(x) - \alpha V(x) = -r(x)$

Example 2:

If
$$V(x) = E^x[\inf_{t \ge 0} \{t : X(t) \notin U\}]$$

then $L_uV(x) = -1$, $V(x) = 0$, $\forall x \in \partial U$

Method:

2. Rewrite original problem as deterministic PDE optimization program

Minimize
$$E^x[f(X)]$$

subject to $SHS(u_t, X_t) = 0$

$$\iff$$
 Minimize $V(x,t)$ subject to $\mathsf{PDE}(u(x),V(x))=0$

3. Solve PDE optimization program using adjoint method Simple and robust...

