Efficient Simulation Model for Hybrid Bond Graphs

Edited and presented by Christopher Beers ISIS, Vanderbilt University

Chess Review November 21, 2005 Berkeley, CA

Introduction

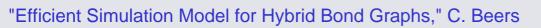
- Simulation of hybrid systems must combine two models of computation
- Hybrid Bond Graphs (HBGs) combine
 - Continuous bond graph (BG) models with
 - Switching junctions controlled by FSM

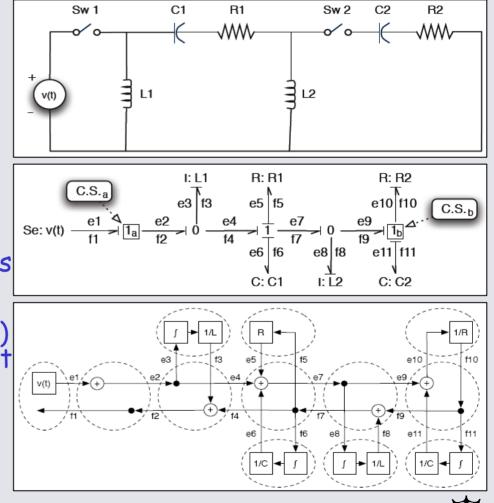
to provide a topological framework that supports runtime model reconfiguration

However, no computational model associated with HBGs

Question: How does one systematically derive simulation models from HBGs?

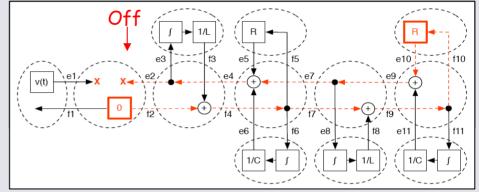
 Approach: Use causal structure implied by BG to derive block diagram models for simulation (SCAP algorithm)

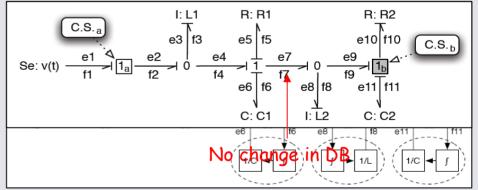



2

HBG Overview

- BG to Block Diagram Computational Model
 - Constituent element blocks + algebraic relations at junctions
- Determining Bond (DB)
 - One per junction, derived from causality at junction
 - Determines algebraic relations
- HBG Complexities
 - Junction switches (on and off) may cause causality changes at runtime, thus block diagram may change
 - Only changes in DBs will change algebraic relations at junction
 - These changes can propagate

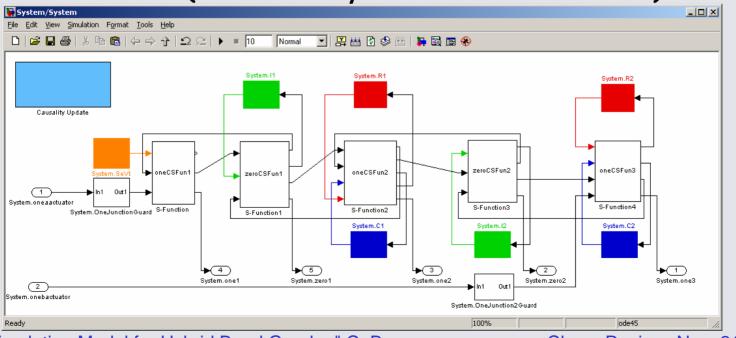

Approaches


- Pre-generate block diagrams for all modes
 - 2ⁿ possible configurations
- Generate block diagrams from scratch after every mode change
 - Can be computationally expensive at switches
- Smarter approach: derive new block diagram incrementally from old
 - Start with block diagram in initial mode
 - Look for changes in DBs
 - Update block diagram at changes

"Efficient Simulation Model for Hybrid Bond Graphs," C. Beers

Junction 1a off, junction 1b on:

Junction 1a on, junction 1b off:



Efficient Simulation Model

- Causality update triggered by change in discrete state
 - Start at junctions which switch
 - If they cause changes in adjacent junction DBs then
 - update DB's algebraic constraints
 - Continue till no DB change or all junctions visited
- For efficiency, junctions implemented as S-functions; use global variables (cf. Ptolemy's director function)

"Efficient Simulation Model for Hybrid Bond Graphs," C. Beers

Questions?

"Efficient Simulation Model for Hybrid Bond Graphs," C. Beers

Chess Review, Nov. 21, 2005

6