
Understandable Concurrency

Edward A. Lee
Professor, Chair of EE, and Associate Chair of EECS
Director, CHESS: Center for Hybrid and Embedded Software Systems
Director, Ptolemy Project
UC Berkeley

Chess Review
November 21, 2005
Berkeley, CA

Lee, Chess Review 2Understandable Concurrency

What would it take to make reliable
concurrent software?

The standard concurrency model, based on:
threads,
semaphores, and
mutual exclusion locks

results in programs that are incomprehensible to humans.

These methods date to the 1960’s [Dijkstra].
Tauntingly simple rules (e.g. always grab locks in the
same order [Lea]) are impossible to apply in practice.
Formal methods can expose flaws, but cannot make
programs understandable.

Lee, Chess Review 3Understandable Concurrency

Red Herrings

Training programmers to use threads.
Software engineering process improvements.
Attention to “non-functional” properties.
Design patterns.
Quality of service.

None of these deliver a rigorous, analyzable,
and understandable model of concurrency.

Lee, Chess Review 4Understandable Concurrency

Problems with Threads:
Example: Simple Observer Pattern

public void addListener(listener) {…}

public void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Thanks to Mark S. Miller, HP Labs, for
the details of this example.

What’s wrong with this
(in a multithreaded context)?

Lee, Chess Review 5Understandable Concurrency

Example: Simple Observer Pattern
With Mutual Exclusion (Mutexes) using
Monitors

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Javasoft recommends against this.
What’s wrong with it?

Lee, Chess Review 6Understandable Concurrency

Mutexes using Monitors are Minefields

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}
valueChanged() may attempt to acquire
a lock on some other object and stall. If
the holder of that lock calls
addListener(), deadlock!

Lee, Chess Review 7Understandable Concurrency

We made exactly this mistake when a code review identified We made exactly this mistake when a code review identified
exactly this concurrency flaw in Ptolemy II.exactly this concurrency flaw in Ptolemy II.

Lee, Chess Review 8Understandable Concurrency

Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}

while holding lock, make copy
of listeners to avoid race
conditions

notify each listener outside of
synchronized block to avoid
deadlock

This still isn’t perfect.
What’s wrong with it?

Lee, Chess Review 9Understandable Concurrency

Simple Observer Pattern:
Is it Even Possible to Make It Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

this.myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}
Suppose two threads call setValue(). One of them will set the value
last, leaving that value in the object, but listeners may be notified in
the opposite order. The listeners may be alerted to the value
changes in the wrong order!

Lee, Chess Review 10Understandable Concurrency

This is Ridiculous…

One of the simplest, textbook design patterns,
commonly used throughout concurrent
programs, becomes a potential Masters Thesis!

Lee, Chess Review 11Understandable Concurrency

… and it Still Gets Worse…
/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {

…
protected class CrossRef implements Serializable{

…
// NOTE: It is essential that this method not be
// synchronized, since it is called by _farContainer(),
// which is. Having it synchronized can lead to
// deadlock. Fortunately, it is an atomic action,
// so it need not be synchronized.
private Object _nearContainer() {

return _container;
}

private synchronized Object _farContainer() {
if (_far != null) return _far._nearContainer();
else return null;

}
…

}
}

Code that had been in
use for four years,
central to Ptolemy II,
with an extensive test
suite (100% code
coverage), design
reviewed to yellow, then
code reviewed to green
in 2000, causes a
deadlock during a demo
on April 26, 2004.

Lee, Chess Review 12Understandable Concurrency

… and Doubts Remain
/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {

…
protected class CrossRef implements Serializable{

…
private synchronized void _dissociate() {

_unlink(); // Remove this.
// NOTE: Deadlock risk here! If _far is waiting
// on a lock to this CrossRef, then we will get
// deadlock. However, this will only happen if
// we have two threads simultaneously modifying a
// model. At the moment (4/29/04), we have no
// mechanism for doing that without first
// acquiring write permission the workspace().
// Two threads cannot simultaneously hold that
// write access.
if (_far != null) _far._unlink(); // Remove far

}
}

Safety of this code
depends on policies
maintained by entirely
unconnected classes.
The language and
synchronization
mechanisms provide no
way to talk about these
systemwide properties.

Lee, Chess Review 13Understandable Concurrency

Nontrivial software written with threads,
semaphores, and mutexes cannot and
should not be trusted!

Lee, Chess Review 14Understandable Concurrency

Stronger Synchronization Properties are
Delivered by the Rendezvous MoC

Conditional rendezvous marries
one of the input processes with
the output process.

Model of computation:
Processes communicating

via rendezvous.

Observer sees values at the same
time as the Value Consumer

Multiway rendezvous requires
both consumer processes to
be ready to consume.

This is a generalization of CSP with
multiway and conditional rendezvous,
again implemented in a coordination
language with a visual syntax.

Deadlock is
provably
avoided

Lee, Chess Review 15Understandable Concurrency

Observer Pattern in Process Networks is
Trivial, as it Should Be!

Explicit nondeterminism
(vs. unexpressed race condition)

Model of computation:
Processes communicating

via unbounded FIFO queues.

Observer sees values in the same
order as the Value Consumer

You can think of this as a
generalization of Unix Pipes
implemented in a Coordination
Language with a Visual Syntax.

Deadlock is
provably
avoided

Lee, Chess Review 16Understandable Concurrency

The Lee Principle of Nondeterminism

Deterministic behavior should be accomplished
with deterministic mechanisms.

Only nondeterministic behavior should use
nondeterministic mechanisms.

This rules out using threads for almost any
deterministic behavior!

Lee, Chess Review 17Understandable Concurrency

Actor-Oriented Approached Don’t
Guarantee Good Design

The two models at the
right implement the
same function, but the
upper one uses subtle
and complex
nondeterministic
mechanisms, while the
one at the bottom uses
simple and direct
deterministic
mechanisms.

Lee, Chess Review 18Understandable Concurrency

Make Easy Concurrency Properties Easy,
so We Can Focus on the Harder Ones

Timing
Controlled nondeterminacy
Consistency in distributed programs
Simultaneity
Fairness
…

Lee, Chess Review 19Understandable Concurrency

Example: Coordinating Timing of
Independent Processes

Lee, Chess Review 20Understandable Concurrency

These Techniques are Examples of a Family of
Concurrent Component Technologies

The new: Actor oriented:
actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

streams of data

class name

data

methods

call return

What flows through
an object is

sequential control

The old: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Chess Review 21Understandable Concurrency

Useful Actor-Oriented
Models of Computation

Synchronous/reactive (SCADE, Esterel, Statecharts, …)
Time triggered (Giotto, Simulink, …)
Dataflow (Labview, SPW, …)
Discrete events (VHDL, Verilog, Opnet, Visualsense, …)
Distributed discrete-events (Croquet, Time Warp, …)
Continuous time (Simulink, …)
Hybrid systems (HyVisual, Charon, …)
Event triggered (xGiotto, nesC/TinyOS, …)
…

None of these have threads!

Lee, Chess Review 22Understandable Concurrency

Conclusion

The time is right to create a 21-st century
technology for concurrent computing.

	Understandable Concurrency
	What would it take to make reliable concurrent software?
	Red Herrings
	Problems with Threads:�Example: Simple Observer Pattern
	Example: Simple Observer Pattern�With Mutual Exclusion (Mutexes) using Monitors
	Mutexes using Monitors are Minefields
	Simple Observer Pattern Becomes�Not So Simple
	Simple Observer Pattern:�Is it Even Possible to Make It Right?
	This is Ridiculous…
	… and it Still Gets Worse…
	… and Doubts Remain
	Stronger Synchronization Properties are Delivered by the Rendezvous MoC
	Observer Pattern in Process Networks is Trivial, as it Should Be!
	The Lee Principle of Nondeterminism
	Actor-Oriented Approached Don’t Guarantee Good Design
	Make Easy Concurrency Properties Easy,�so We Can Focus on the Harder Ones
	Example: Coordinating Timing of Independent Processes
	These Techniques are Examples of a Family of Concurrent Component Technologies
	Useful Actor-Oriented �Models of Computation
	Conclusion

