Sensor Network Design

Edited and presented by Akos Ledeczi ISIS, Vanderbilt University

Chess Review November 21, 2005 Berkeley, CA

Composition and Synthesis

- Gratis: Visual Composition and Synthesis Environment for TinyOS
- Ported to nesC 1.2
- Built using the Generic Modeling Environment (GME)
 - Meta programmable toolkit using UML and OCL
- Hierarchical representation of TinyOS applications
 - Interfaces: set of events and commands
 - Modules: interface references and implementation code
 - Configurations: set of interface, module and configuration references
- Automatic generation of all configuration files from graphical models
- Can parse existing TinyOS applications and libraries and build equivalent graphical models
 - In TinyOS 1.2 over 10000 connections and objects are provided as a library to the user
 - Necessary to keep visual models and source base in sync
- Extensible through meta-model composition and add-ons

2

Design Space Exploration

• GRATIS modeling extensions:

- Component and configuration alternatives
- Resource usage attributes for components: number of tasks and timers and amount of RAM used etc.
- OCL constraints to specify requirements and resource constraints

• GRATIS – DESERT integration:

- A model interpreter configures DESERT w/ the design space and constraint captured in GRATIS
- A second model interpreter takes the output of DESERT (i.e. a subset of the design space) and allows the user to select the desired configuration and then automatically configures the GRATIS models

"Sensor Network Design", A. Ledeczi

Chess Review, Nov. 21, 2005

Multiplatform support

GRATIS resolves:

- Alternatives capturing the design-space of the application. Selection is based on resource and other application-specific constraints and is carried out by the DESERT tool.
 - Platform alternatives representing the target hardware platform. It is based on component platform attributes and is carried out by DESERT.
 - Conditional compilation alternatives. It is based on preprocessor macro definitions and is carried out by the parser

TinyDT: Eclipse IDE for TinyOS

Features:

- Syntax highlighting
- Code completion
- Component Browser
- Configuration View
- Integrated TinyOS
 Compiler Toolchain

Planned features:

- Model-based interface
- Integrated Loader
- Integrated Simulator
- Message Editor
- Sensor Network
 Management Console

http://www.tinydt.net

"Sensor Network Design", A. Ledeczi

Chess Review, Nov. 21, 2005

Virtual Thread Abstraction

Motivation

- modules which execute a series of actions that need to be broken up into commands and event handlers are hard to program
- C control constructs (for, while, do-while) cannot be used to iteratively execute split-phase operations
- variables shared between commands and event handlers must be declared in global scope (which is error-prone)
- component state has to be managed by the programmer (which is error-prone)
- components commonly implement state-machine like functionality, but nesC lacks explicit language support

Approach

- Language extensions that provide support for blocking operations
- Implemented as a program translator
- Seamless integration with the TinyOS/nesC tool chain

Benefits

- more comprehensible source code
- familiar thread-like abstraction
- split-phase operations can be part of C control structures
- manages module state
- manages global variables (variables that are never used concurrently can be allocated at the same memory address)
- protects from unexpected events
- seamlessly integrates into the existing development tool chain

Radio Interferometric Localization

"Sensor Network Design", A. Ledeczi

- 12000m² area
- 16 XSM motes on the ground
- Minimum node distance 25m
- 3 anchor nodes
- Took 50 minutes
- Average loc error < 4cm
- Maximum loc error 12cm
 - Maximum "range" 170m

Chess Review, Nov. 21, 2005

"Sensor Network Design", A. Ledeczi

8

RiTS: Routing Integrated Time Sync

- Combination of Time Synchronization and Message Routing
- No extra messages
- Stealth operation
- Uses the TimeStamping module that has 1.2 us precision per hop
- No clock skew estimation
- Precision depends on the hop count of the route and on the total routing time
- Integrated with the Directed Flood Routing Framework

RaTS: Rapid Time Synchronization

- 5x10 grid on desktop; neighbor to neighbor communication enforced in sw
- Infrequent resynchronization after initial startup phase: 1 hour interval
- Rapid synchronization: 30 seconds startup time
- Initial error is 1 ms max
- After regression table is full with 8min interval data, error goes down to 360 us max, 100 us average.

- Idea: utilize RITS with broadcast
- Base station broadcast a message with current global time periodically. Every node receives it along with the measured delay.
- Global time estimate is put in a linear regression table.
- After three broadcasts, good clock skew estimate is already available.
- Short initial period to achieve rapid startup

