Model-Based Design Overview

Edited and presented by Janos Sztipanovits and Gabor Karsai ISIS, Vanderbilt University

Chess Review November 21, 2005 Berkeley, CA

Model-based design focuses on the *formal representation, composition, and manipulation of models* during the design process.

2

"Model-Based Design Overview", J. Sztipanovits

Chess Review, Nov. 21, 2005

Core Modeling Aspects in System Composition

Medalad an different levels of chatmosticus	
Component Behavior	 Modeled on different levels of abstraction: Transition systems (FSM, Time Automata, Cont. Dynamics, Hybrid), fundamental role of time models Precise relationship among abstraction levels Research: dynamic/adaptive behavior
Structure	 Expressed as a system topology : Module Interconnection (Nodes, Ports, Connections) Hierarchy Research: dynamic topology
Interaction	 Describes interaction patterns among components: Set of well-defined Models of Computations (MoC) (SR, SDF, DE,) Heterogeneous, but precisely defined interactions Research: interface theory (time, resources,)
Scheduling/ Resource Mapping	Mapping/deploying components on platforms: • Dynamic Priority • Behavior guarantees • Research: composition of schedulers

"Model-Based Design Overview", J. Sztipanovits

Tool Composition Approaches

Domain-Specific Tools; Design Environments	Domain-Specific Design Flows and Tool Chains: • ECSL - Automotive • ESML - Avionics • SPML - Signal Processing • CAPE/eLMS
Metaprogrammable Tools, Integration Frameworks	MIC Metaprogrammable Tool Suite: (mature or in maturation program) • Metamodeling languages • Modeling Tools • Model Transformations • Model Management • Design Space Construction and Exploration • Tool Integration Framework
Semantic Foundation	Semantic Foundations (work in progress): • Semantic Anchoring Environment (SAE) • Verification • Semantic Integration

"Model-Based Design Overview", J. Sztipanovits

Domain Specific Design Flows and Tool Chains

- ECSL Automotive
- ESML Avionics
- SPML Signal Processing
- FCS Networked Embedded Systems
- CAPE/eLMS Courseware Design/Delivery
- Integration among tool frameworks: Metropolis, Ptolemy II, MIC, Simulink/Stateflow, ARIES, CheckMate,...
- www.escherinstitute.org

"Model-Based Design Overview", J. Sztipanovits

Transformational Specification of Semantics

• Specify mapping to another language with welldefined semantics.

"Model-Based Design Overview", J. Sztipanovits

Semantic Units

- Ongoing Work
 - Capture the behavioral semantics of a finite set of basic models of computations, such as FSM, DE, TA, SDF...
- Further exploration of the concept of abstract semantics with Berkeley. "Model-Based Design Overview", J. Sztipanovits Chess Review

Semantic Anchoring Tool Suite

- Metaprogrammable tools
- Syntactic manipulations

- Abstract State Machine (ASM) (Evolving Algebras)
- AsmL tool suite

"Model-Based Design Overview", J. Sztipanovits

DSML Design Through Semantic Anchoring

- Ongoing Work
 - Specification of component interaction semantics (MoC-s)
 - Design of a DSML Specification Environment
 - Compositional Semantics (with Berkeley and J. Sifakis, Verimag)

Progress in Model Transformations: GReAT

Sorting the transformation results

sequence of matched objects that could be sorted after the rule is applied.

Consequence: Model transformation results are ordered by the sorting function. CHESS KEVIEW, NOV. 21, 2003

Additional new capabilities:

Consequence: The transformations are simplified.

- •Distinguished cross-product: a new built-in operator of the language that refines pattern matching semantics
- •Match-any associations: "wild-card" pattern matching construct for matching arbitrary associations
- User code libraries
- •Support for automatic connection of multi-ported objects in the modeling tool
- Integration with new development platform (Microsoft VS 7+)
- •Support for XML namespaces
- Integration with Java in the data layer (UDM)
- Support for text output (UDM, using OCL for scripting)
- •Support for structured text input: input is parsed using a
- declarative parser that constructs the input data structures

400

500

111

Labor

Chess Review, Nov. 21, 2005

Example:

Mode M has Task,

period., = 600

transformation from Giotto to E-code can be implemented in terms of graph transformation operations.

"Model-Based Design Overview", J. Sztipanovits

Model Transformations in Toolchains: Platform Modeling & Analysis

"Model-Based Design Overview", J. Sztipanovits

Research on Model Transformations: Next steps

- (Better) formal semantics of GReAT
 - Goal: Reasoning about transformations
 - Use: in semantic anchoring
- Verification/certification of transformations
 - Proving that the generated output satisfies some interesting properties
- Traceability
 - Generated artifacts must be traceable back to their origins
- Model transformations for model evolution
 - Model management and engineering in largescale embedded systems
- Transformations in mixed-mode development
 - Model-based components with hand-written code
- Experimentation with platform modeling and analysis
 - Event-driven and time-triggered platforms
 - Multiple analysis tools
- Transformations "guided" by platform restrictions
 - Example: resource-constrained platforms may influence the transformation process
- Using graph transformations for embedded component adaptation

Further Presentations

- Ethan Jackson: Coupled Interface Modules for Heterogeneous Composition
- Kai Chen: A Semantic Unit for Timed Automata Based Modeling Languages
- Tivadar Szemethy: Platform Modeling
- Trevore Meyerowitz, Ethan Jackson: Integration of Metropolis with GME and DESERT

