Reachability Analysis for Discrete Time Stochastic Hybrid Systems

Edited and presented by Saurabh Amin UC Berkeley

Chess Review November 21, 2005 Berkeley, CA

Introduction

- Stochastic hybrid systems (SHS) can model uncertain dynamics and stochastic interactions that arise in many systems
- Probabilistic reachability problem:
 - What is the probability with which the system can reach a set during some finite time horizon?
 - (If possible), select a control input to ensure that the system remains outside the set with *sufficiently high* probability
 - When the set is *unsafe*, the problem becomes a quantitative safety verification problem. In this case, find the *maximal safe sets* corresponding to different safety levels

2

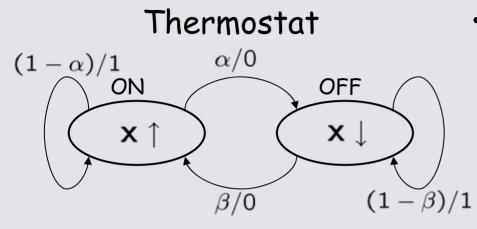
Discrete Time Stochastic Hybrid System (DTSHS)

- Definition of DTSHS $\mathcal{H} = (\mathcal{Q}, n, \mathcal{U}, \Sigma, T_x, T_q, R)$
 - where Q is the set of modes, the map n defines the dimension of the continuous state space of these modes, U and Σ are the transition and reset control spaces, and T_x, T_q , and R are continuous, discrete, and reset stochastic kernels
- DTSHS as controlled Markov process
 - State space: $\mathcal{S} = \cup_{q \in \mathcal{Q}} \{q\} \times \Re^{n(q)}$
 - Control space: $\mathcal{A} = \mathcal{U} \times \Sigma$
 - Controlled transition kernel: $T_s(ds'|s, (u, \sigma))$ which is

 $T_x(dx'|(q,x),u)T_q(q'|s,u) \text{ if } q' = q \text{ (no transition)}$ $R(dx'|(q,x),\sigma,q')T_q(q'|s,u) \text{ if } q' \neq q \text{ (transition)}$

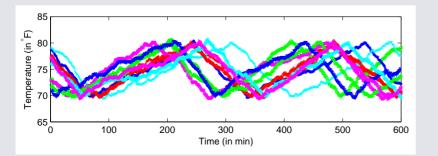
3

Motivational Example



Trivial Switching Control Law

Switch when state hits unsafe set



- System dynamics
 - Continuous dynamics
 - **OFF** $\mathbf{x}(k+1) = a\mathbf{x}(k) C_1 + \mathbf{n}(k)$
 - ON $\mathbf{x}(k+1) = a\mathbf{x}(k) + C_2 + \mathbf{n}(k)$
 - Discrete transition kernel
 - "Switch" $\begin{pmatrix} 1-\alpha & \alpha \\ \beta & 1-\beta \end{pmatrix}$
 - "Don't switch" $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - Continuous and rèset transition kernels
 - Off $\mathcal{N}(\cdot; ax C_1, \nu^2)$
 - **ON** $\mathcal{N}(\cdot; ax + C_2, \nu^2)$

4

Stochastic Reachability

- Assumptions
 - Markov policies
 - Set \mathcal{M}_m of $\mu = (\mu_0, \dots, \mu_{N-1}) \ni \mu_k : \mathcal{S} \to \mathcal{A}$
 - Finite horizon and complete observability
- Reach Probability
 - Probability that the execution of \mathcal{H} associated with policy $\mu \in \mathcal{M}_m$ and initial distribution π will enter set A during time [0, N] $p_{\pi}^{\mu}(A) = P_{\pi}^{\mu}(\mathbf{s}(k) \in A \text{ for some } k \in [0, N])$
- Probabilistic safe set
 - Set that guarantees safety probability (1ϵ) for policy $\mu \in \mathcal{M}_m$: $S^{\mu}(\epsilon) = \{s \in S : p_s^{\mu}(A) \leq \epsilon\}$

5

- Multiplicative cost function
 - Note that $p^{\mu}_{\pi}(A) = 1 p^{\mu}_{\pi}(A^c)$

- Where, $p_{\pi}^{\mu}(A^{c}) = E_{\pi}^{\mu}[\prod_{k=0}^{N} \mathbf{1}_{A^{c}}(\mathbf{s}(k))]$

- Reach probability computation by backward recursion for fixed Markov policy μ
 - Define the set of functions $V_k^{\mu} : S \to [0, 1]$ as $V_N^{\mu}(s) = \mathbf{1}_{A^c}(s)$
 - $V_k^{\mu}(s) = \mathbf{1}_{A^c}(s) \int_{\mathcal{S}} V_{k+1}^{\mu}(s_{k+1}) T_s(ds_{k+1}|s, (\mu_k(s)), \text{ for } k \in [0, N-1]$
 - Then, $p_{\pi}^{\mu}(A^{c}) = \int_{\mathcal{S}} V_{0}^{\mu}(s) \pi(ds)$
 - And, $S^{\mu}(\epsilon) = \{s \in S : V_0^{\mu}(s) \ge 1 \epsilon\}$

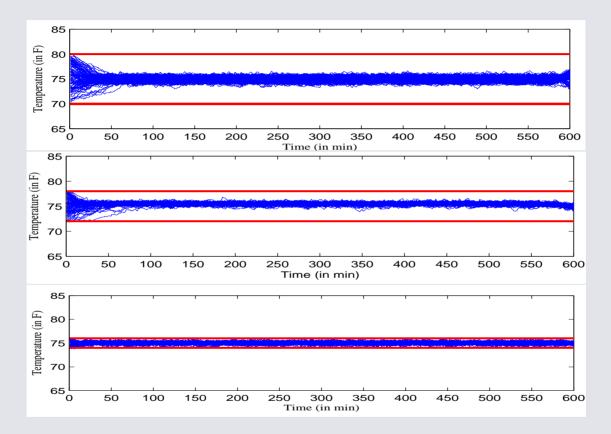
6

Maximal Probabilistic Safe Set Computation

- For safety level (1ϵ) , maximal safe set $S^* = \{s \in S : \inf_{\mu \in \mathcal{M}_m} p_s^{\mu}(A) \le \epsilon\}$
- Dynamic programming recursion
 - Define the set of functions $V_k^*:\mathcal{S}
 ightarrow [0,1]$ as
- $V_N^*(s) = \mathbf{1}_{A^c}(s)$
- $V_k^*(s) = \sup_{(u,\sigma)\in\mathcal{U}\times\Sigma} \mathbf{1}_{A^c}(s) \int_{\mathcal{S}} V_{k+1}^*(s_{k+1}) T_s(ds_{k+1}|s,(u,\sigma)), \text{ for } k \in [0, N-1]$
 - Then, $V_0^*(s) = 1 \inf_{\mu \in \mathcal{M}_m} p_s^{\mu}(A)$ for all $s \in S$
 - And so, $S^* = \{s \in S : V_0^*(s) \ge 1 \epsilon\}$
 - Existence of optimal policy

 $\mu_k^*(s) = \arg \sup_{(u,\sigma) \in \mathcal{U} \times \Sigma} \mathbf{1}_{A^c}(s) \int_{\mathcal{S}} V_{k+1}^*(s_{k+1}) T_s(ds_{k+1}|s, (u,\sigma))$

Computational Results (1/3)



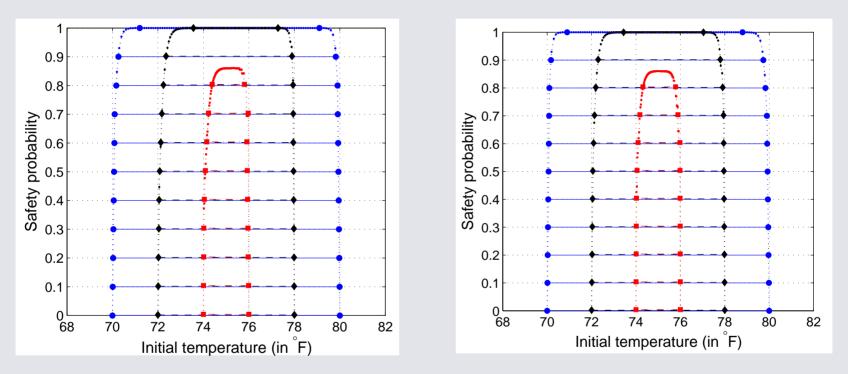
• Executions generated by optimal policy for three safe sets: $(70, 80)^{\circ}F$, $(72, 78)^{\circ}F$ and $(74, 76)^{\circ}F$

8

"Reachability analysis for SHS", Saurabh Amin

Chess Review, Nov. 21, 2005

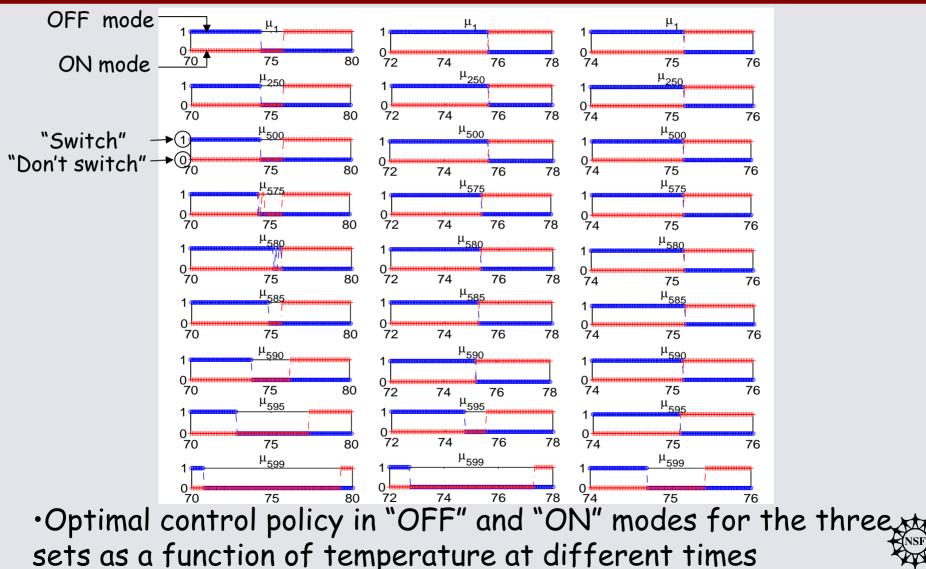
Computational Results (2/3)



 Maximal probabilistic safe sets for the three sets for different safety levels when the initial mode of heater is "OFF" and "ON" respectively

9

Computational Results (3/3)



Conclusion and Future Work

- For controlled SHS
 - Proposed a model for controlled discrete time SHS suitable for optimal control and reachability analysis
 - Interpreted the safety verification problem in terms of stochastic reachability notion
 - Developed a dynamic programming based approach for computing probabilistic maximal safe sets and the optimal feedback policy
 - Applied the proposed methodology on a simple example and presented computational results
- Future work
 - To address the problem of reachability analysis for continuous time SHS

