Coupled Interface Modules for Heterogeneous Composition

Edited and presented by Ethan Jackson ISIS, Vanderbilt University

Chess Review November 21, 2005 Berkeley, CA

Semantic Units and DSMLs

- DSMLs define a structural semantics or abstract syntax via • a metamodel. To a model

(via GME)

From a metamodel

- Semantic units map models to ٠ initial conditions of an abstract state machine (ASM)
- Can leverage well-understood properties of FSMs while preserving domain specificity.

Chess Review,

Is Composition Easy?

State Space: Im $M_{s1} \times \text{Im } M_{s2}$ Initial state = (State₁, State₂) ASM: ($F_1 \circ F_2$)

• The major problem is not expressiveness of automata composition, but rather the difficulty of unifying events (tags) while preserving abstractions.

- We can check if the system blocks by performing a liveness analysis, but this ignores the obvious causality information, and is computationally harder.
- We lost abstractions by completely relying on automata composition, thus reducing problems to (generally) difficult reachability analysis.

Encodes blocking condition

Chess Review,

Composition Through Interfaces

 Composition through interfaces allows us to insert another mathematical framework for describing semantics of communication that preserves the abstractions.

From this perspective, there are already many existing candidates for a mathematical framework. We focus on the operational approaches.

٠

Graphics taken from GÖSSLER, G., AND SIFAKIS, J. Composition for component-based modeling. In *Proceedings of FMCO02* (November 2002), vol. 2852, LNCS, pp. 443-466

Graphics taken from BENVENISTE, A., CAILLAUD, B., CARLONI, L.P., and SANGIOVANNI-VINCENTELLI, A.L. Tag Machines *Proceedings of the Fifth International Conference on Embedded Software (EMSOFT), 2005*

LEE, E. A., and Xiong, Y., "A Behavioral Type System and Its Application in Ptolemy II," *Aspects* of *Computing Journal*, special issue on "Semantic Foundations of Engineering Design Languages." Chess Review.

Coupled Interface Modules

- Automata based methods have had success (e.g. Ptolemy II, Chic, Gratis II/GME), but, in general, do not scale. Other methods show promise, but lack mathematical maturity and generalizations.
- We propose to ground heterogeneous composition with the powerful machinery of linear algebra. Specifically, we use a generalization of vector spaces, called a *module*, to describe interfaces.

• Component interfaces are "vectors" in an event module, over which inner and tensor products are define. Event modules have equipotent bases, and operations are matrix multiplications.

$$(A^T \ M \ \Pi^k(i)P) = \left\|\Pi^k(i)P\right\|$$

Example of an interaction rule

• Components are composed through synchronous product of automata, and tensor products of interfaces and operations. One consequence: Interfaces can be factored.

$$I = (A_i \otimes A_j, P_i \otimes P_j, M_i \otimes M_j + \mathbf{Re}(R_i \otimes R_j))$$

Chess Review,