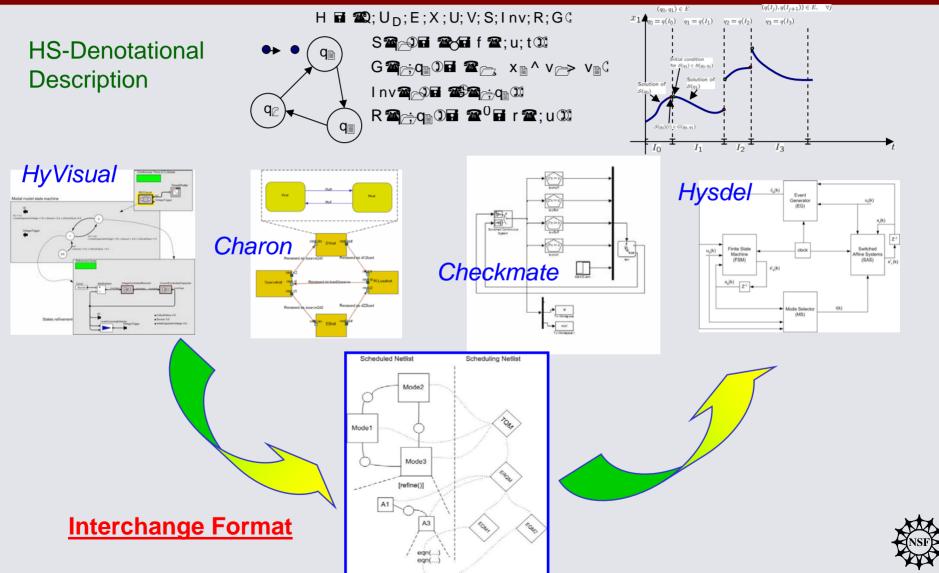
Interchange Format for Hybrid Systems

Edited and presented by Alessandro Pinto UC Berkeley


Chess Review November 21, 2005 Berkeley, *CA*

Interchange Format: The big picture

Review of hybrid system design environments

Name	Automata Definition	State ->Dynamics Mapping	Supported Dynamics	Guards	Invariants	Reset Maps
Simuink/ Stateflow	Stateflow	Stateflow output selecting state evolution	No limitations	Conditions on Stateflow inputs and Th. Crossing detectors	Not supported	Reset of integrators from Stateflow outputs
Modelica	Implicit	Events enabling equations		Triggering conditions on state variables	Not an explicit language feature	Reinit statements
HyVisual	Explicit FSM representation	Discrete state refinement		Triggering conditions on state variables	Not supported	Assignment on the FSM edges
Scicos	Implicit using threshold and switches	Events switching dynamics	No limitations	Threshold detectors	Threshold detectors	Re-initialization of integrators
Shift	Text-based definition of locations and tranistions	Flows as location arguments	No limitations		Conditions on system variables	Assignment statements
Charon	Mode composition and refinement	Differential and algebraic constraints inside modes	No limitations	Enabling conditions on system variables	Constraints on system variables	Assignment statements
HyTech	Explicit declaration of locations and transitions	Flows defined in each location	Predicates on derivative variables		Convex predicates on system variables	Assignment statements
Checkmate	Stateflow	Mode selector from stateflow to a set of dynamics	Linear or non linear	Affine inequalities	Not supported	Affine maps
d/d†	Explicit declaration of locations and transitions	Flows defined in each location	Linear		Convex predicates on state variables	Not supported
Hysdel	Logic formulas on boolean	Mode selectors	Discrete time and	Threshold conditions on	Not supported	Modeled as one sep

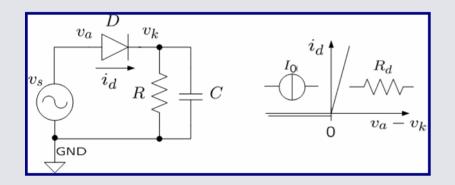
linear

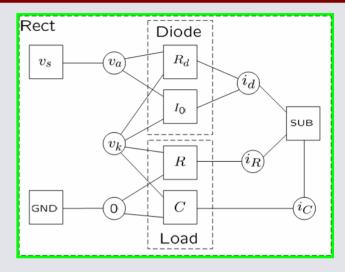
variables

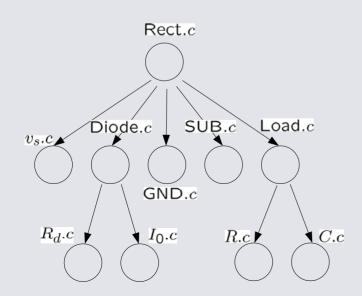
system variables

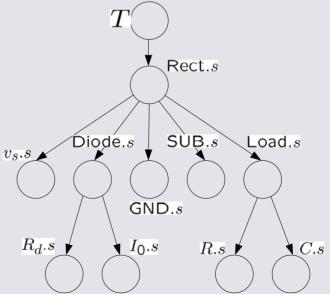
dynamics

Review of hybrid system design environments

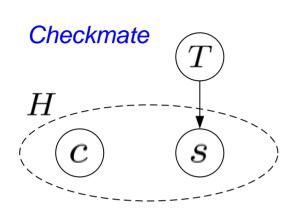

Name	Hierarchy	Composition	00	Causality	Algebraic Loops	Dirac Pulses	Continuous/Discrete Interface
Simuink/ Stateflow	У	Continuous variables (Simulink) and discrete events (stateflow)	N		Explicit Algebraic loop solver	N	Stateflow acting on Simulink blocks
Modelica	У	Connection Statements	У	Non causal components and causal functions	Simulator dependent	N	Events enabling equations
HyVisual	У	Ports exposing internal variables	У	Causal	Not Supported	N	States refined into dynamical systems
Scicos	У	Continuous and discrete variables	N	Causal	Not Supported	N	Discrete states affecting continuous states
Shift		Continuous variables and event synchronization	У	Causal	Not Supported	N	Flows associated to locations and reset maps
Charon	У	Connection of agents variables	N	Causal	Not Supported	N	Modes declaring differential/algebraic constraints
HyTech	N	Synchronization of automata	N	Causal	Not Supported	N	Flows associated to locations and reset maps
Checkmate	N	N	N	Causal	Not Supported	N	Mode selectors switching dynamics
d/d†	N	N	N	Causal	Not Supported	N	Flows associated to locations
Hysdel	N	N	N	Causal	Not Supported	N	Mode selectors dynamics

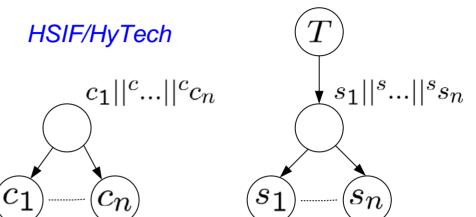

[&]quot;Interchange Format for HS", Alessandro Pinto

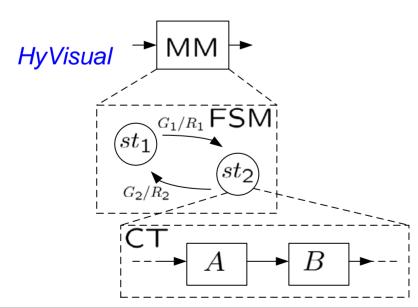

Interchange Format

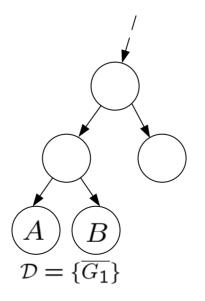


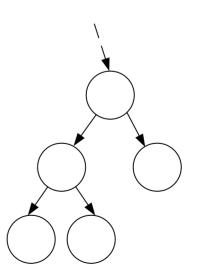
(A. Pinto, L.P. Carloni, R. Passerone, A.L. Sangiovanni Vincentelli "Interchange Format for Hybrid Systems: Abstract Semantics" Submitted to HSCC 2006)

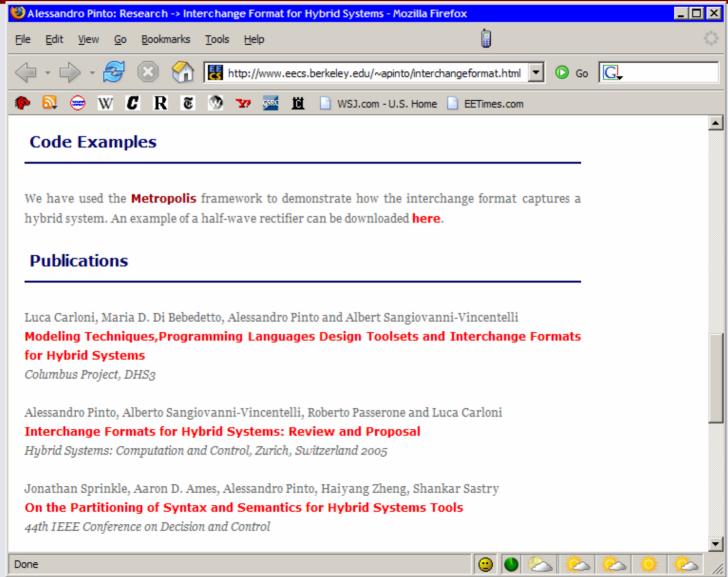







Structure of existing languages





http://www.eecs.berkeley.edu/~apinto/interchangeformat.html

