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Abstract hope that object technology can be used to establish system-
aticreusehas failed. The shift from objects to components

Component technology tries to solve many problems ofreflects these additional requirements. A fixed architectural
todays software industry practice: the productivity and pro- basis and system level mechanisms instead of programming
duced quality should be increased and a better infrastruc- language mechanisms are the crucial point to handle the de-
ture for maintenance of the products is promised. The in- scribed additional requirements and to achieve a more flex-
tegration of off-the-shelf componentto build customized ible notion for the composition of element€Component
products allows to source out the development of generaltechnology[37] goes one step further in comparison with
purpose components. A crucial prerequisite for the in- object-orientationas a language feature by decomposing
tended scenario of component usage is their strong separa-an application or system into runtime elements, that can be
tion. Especially in a distributed environment, synchroniza- build, analyzed, tested and maintained independently. The
tion aspects are of great importance to identify a suitable integration of availableff-the-shelf componenitsto appli-
architecture and to decide whether a component matchescations and their combination can help to further improve
some requirements. The presented approach allows toproductivity and decrease the time to market in the software
model the synchronization aspectaaitractsin a flexible industry.
manner including a whole spectrum of different degrees of
preciseness from declaration of abstraction barriers to com-
plete synchronization specifications describing the explicit
behavior. The used Petri net bas@@€oN behavior specifi-
cation formalism is structurally embedded in the UML and
supports analysis and design of component systems.

A development method for component based applica-
tions and systems must be aware of additional problems.
The design is further separated intomponent design
where a single independent shippable product for general
use is the intention, andomponent system desjgmhich
considers combination and configuration of given compo-
nents or the decomposition of a task into given and appli-

) cation specific component€omponent desigis restricted
1. Introduction to isolated components having a fixed contract with the en-
vironment, while thecomponent system desigas to con-

The complexityof todays software projects is continu- sider the coarse grain design and separation. The isolation
ously growing and so does the need for sophisticated systenbetween design and implementation of a component has to
analysis and design. Object-oriented analysis and desigrbe supported by the architecture and a suitable separation.
[5, 32, 22, 12] offers methods for analysis, design and im- Otherwise the postulated component exchangeability and
plementation of systems in a seamless fashion. In contrasthdependence between component provider and component
to structured analysig§13], the transition from design to integrating products is not realistic. Both kinds of design
implementation is more continuous. Traditionally, object- problems have to face the resulting problems of late inte-
oriented techniques are used to specify fine grain structuregration. The knowledge of common models &wftware
using classes and their relations. Normally, one of the pop-testingusingmoduleandintegration testinds not sufficient
ular object-oriented programming languages, like C++, is any more. The component notion g@fiality has to satisfy
chosen as target language. Often, the overall architecture ohigher expectations, because the late integration phase is not
the coarse grain structure has been neglected or ignored atvailable for testing any more. Thus, software components
all. On the other hand, a dedicated design of a suitsdife have to be more robust than usual applications. This addi-
ware architecturd34] is often needed to improve software tional demand for software quality may delay the develop-
quality and to provide better maintainable products. But the ment of a component market. The support for maintenance,
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management and configuration has to be integrated into thecalledprovidedand imported contracts, calleded w.r.t. a
component infrastructure. component. For provided contracts, the component has the
Up to now, software products often provide isolated solu- obligation to serve it and for used ones the component may
tions for business or industry applications. Today software demand several contractual properties.
begins to interlink the different isolated information system  To figure out which aspects are of importance for a suit-
structures. Interoperability, flexible data exchange and shar-able contract notion, several characteristics of todays com-
ing as well as support for group work become essential re-ponent concepts like linkage time and linkage typing are
quirements. Thuglistributionandconcurrencyare aspects,  discussed next. Afterwards, the additional constraints for
further generations of software have to manage. component design and the need to considesynehroniza-
The presented approach provides techniques and notation between components is demonstrated.
tions to tackle the additional requirements of component A central characterization for component contracts or
design. Structure and connectionsasimponent Systems  connections is the point in time when the connections are
are specified using the structure description notations of theggtaplished (linkage). The traditional cases stegic link-
UML [31], the de-facto standard for object-oriented mod- age of subcomponents at construction time of a program,
eling. The common notion of interfaces is extended by a gynamic linkageluring the program startup asntime link-
protocol to support contract-based design for components 4gewhere running components are interconnected.
Syn_chronization restrict_ions can furthgr be specifieq in a The typing of linked connections is also of considerable
flexible manner to describe dependencies between dmer?”‘nterest. For interprocess communicatiantyped interac-
contracts of the same component. Thus, the concrete in-

teraction can be specified and architectural aspects becomtion based on streams, shared memory, etc. or even ab-
more obvious P P Stract synchronization with mutex or semaphores are used,

. . ... while linking programs, modules and libraries often sup-
In the following section, several relevant characteristics g prog P

. . ports procedure typing on the compiler level. The case of
of components and the avallgblg technolpgy are dlsfcussedruntimeIinkage is of special interest for todays component
Then, component synchronization and its impact is con-

idered i tion 3. Th q h is sketch %achnology. Several levels of typing have been introduced.
sidered in section 2. € Proposed approach 1S SKEICNey  yhe ociet level, several services based on TCP connec-
in section 4 and its structural embedding into the UML is

: i .. _tions have been standardized (ftp, nfs, http, etc.). To further
presented. An example in section 5 presents several differ- (ftp b )

t desian decisi d thei deli ith th h support remote or local procedure call client/server inter-
ent desigh decisions and their moceling wi € approach. 5 ction, common packet formats and integrated marshaling
The article closes with some remarks on related work.

stubs (e.gDCE [9]) have been used. These approaches
_ still provide only a host-server abstraction, while object-
2. Component Notion oriented extensions introduce the object or interface notion
to make service access points first class elemeltRBA

A general notion of @omponenshould also include tra- [27] started from scratch 1989 as an initiative to build an in-
ditional component types likkbraries or modules Even teroperable object bus standard with suitable infrastructure.
when they do not support all characteristics of todaffs ~ Its main antagonist is Microsoft®COM [10] which is a
the-shelf componertoncepts, it is important to keep the step by step extension @fOM (component object model
basic concepts and their implications in mind. Besides theformerly nameccommon object model These approaches
pure off-the-shelf componemtotion, there may exist sev- allow to send and distribute interface references as usual
eral levels of component usage, which are of interest, too.parameter valuesava RMI [36] further extends this devel-
Imported and exported types of a component are a rele-opment by also supporting tlebject per value discipline
vant aspect as well as its connections with the environmentWithin its remote method invocatiamechanism.CORBA,
Szyperski37, 38] defines @omponenas follows:"A Soft- DCOM andJava RMI are enabling technologies which pro-
ware component is an unit of composition with contractu- Vide typed component linkage at runtime. To discuss this
ally specified interfaces and explicit context dependenciesdevelopment, the relevant aspects for runtime linkage are of
only. A software component can be deployed independentlynterest.
and is subject to composition by third partiegbr each in- When untyped basis mechanisms like TCP sockets are
terface a component has either contractually obligations orthe linkage mechanism, a suitable connection has to be de-
demands and thus at least some kind of informal contractscribed by defining all valid packet formats and an agree-
for each of them exists. ment on the protocol built upon the packet formats. When

The general description of a component consists of theabstracting from the basic TCP protocol steps to estab-
component or subsystem itself and its imported or exportedlish a connection, often simplstatelessprotocols like
contracts. To make the contract notion more concrete, thethe common basi¢iTTP [3] protocol, which uses the re-
approach clearly distinguishes between exported contractsguest/response scheme, are used. These protocols provide
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a high degree of independence, which is often useful in awhich emphasizes theontract principle[24] as essential
distributed environment. aspect of any component technology, the specification of
The further improved typing using client/server ap- contractsin practice is not supported by any object bus tech-
proaches manages the error prone encoding of packets an@ology. Instead, the handling of interface contracts is as-
provides the higher level concept oframote procedure  sumed to take place in additional specification documents
call. In general this basic scheme of interaction does notand additional features like unique interface version num-
make an explicitinteraction protocol obsolete. Client/server bers are used to achieve consistency.
systems often providestatelesgrotocol, e.g.NFS [35] is
based on a standardizezgimote procedure calhechanism 3 Component Synchronization
and is astatelessand idempotenfprotocol to handle con-
nection aborts and re-transmissions. It is remarkable, that
common network based services liKES avoid any com-
plex interaction with third components and thus build final
leaves in the component tree or directed acyclic graph.

Szyperski[37] identifies another serious problem oc-
curring whencallbacksare used. He demands to spec-
ify re-entrance conditions to cover these problems,réut

: i entranceis only a special case of the more general question
TheCORBA or DCOM object bus approaches provide the how components magynchronize Whenstate based pro-

illusion of a virtual object spce, where interfaces instead y,06|sare considered and concurrency is present, a general
of hosts abstract from physical locations. These reference%reatment ofynchronizatiorspects is needed.

can be further distributed to make them available to other
clients. But, their typing notion is still restricted to the syn-
tactical interface aspect. Complex protocols and their im-
pact on a correct cooperation are not considered. The object
businterfaceconcept does essentially combine data and be-
havior by applying the object metaphor. Thus, the resulting
protocols might not always remasgtateless&s common for Figure 1. Example structure for a callback
the design of services likeFS or HTTP.

Traditionally, the basic mechanisms used for component  The structural situation of eallbackis visualized in fig-
reuse andbstatic linkageare the libraries which provide a ure 1. The provided and used contracts build a cyclic depen-
procedural abstractiomvith strict acyclic depending layers.  dency and thus the classical procedural abstraction fails and
The explicit sharing of resources is avoided where possible.insteadsynchronizatioraspects have to be considered, too.
The common components falynamic linkageare either  In classical layered hierarchical systerallbacksagainst
namedshared libraryor dynamic link library(dll). They the hierarchy calledp-call[11] cause several problems and
support a perfect separation for the using clients and pro-enforce the library designer to provide a consistent library
vide the perfect illusion oéxclusiveusage, too. Also, alay-  state even during such calls.
ered structure from the operating system APl up to domain  Usingthread-safebjects does not ensure systems which
specific or more comfortable libraries is common. Both sce- are alsore-entrance safe Phenomena likeelf-recursion
narios provide contracts in an exclusive fashion and abstractandre-entrance patternadditionally lead to deadlocks (so
from code or data sharing. Tloé-the-shelf componenon-  called self-infected deadlockg8]). But even in simple
cept in contrast is intended to support arbitrary structures,cases, the system malfunction may be caused by synchro-
has to be able to allow more sophisticated interaction con-njzation effects. Consider, for example, the case of a com-
cepts likecallbacks Also the restriction tetatelesgproto- ponent with a single thread of control. When it calls an-
cols is often not possible. other component via a remote procedure, it is blocked until

Besides the basic object bus infrastructure and a com-the request is processed and thus any callback is blocked.
munication mechanism, component based development reif the called component waits for the callback to fulfill the
quires further aspect®COM supports components with its  request, at least the first component is totally blocked for-
ActiveX or DNA architecture as well ava Enterprise Jav-  ever due to a resource conflict concerning its single thread.
aBeang(EJB) [23]. A specification of a component model For components in a distributed environment the situation
for CORBA is under development (see [1]). These com- becomes even more complex and the system operation may
ponent models improve the basic object bus technology bycritically depend on the request scheduling strategy of the
specifying interfaces for several basic qmunent manage- implementation.
ment aspects and support for componigetcycles But be- Object-oriented type structures often contain cycles (re-
sides these technical solutions to obtain interoperable run-cursive data types), but traditional object-oriented systems
time components, theagessary contract specification is ne- were not concurrent, and, hence, this aspect has often been
glected. In contrast to the former definition fmymponents  ignored. In the case of multiple threads or concurrency in
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general, theynchronizatiotbecomes even more important. syntactical interface typing does not cover all relevant as-
Consider as an example the classical recursive defined dipects for component composition. It determines all mes-
rectory class. A first version may not support file links and sage formats of a protocol by defining a standard encoding,
thuscyclesare excluded. But when links are also consid- but it does not describe which processing order is needed.
ered, a possibly cyclic structure is described. Common re-Only interfaces wittstatelesgprotocol in situations without
alizations like file systems reflect this by extending related re-entranceand cyclic structures are covered. Suggested
tools to prevent infinite processing (e.g., Unix find com- trace-based extensions [29, 30, 25] can exclude the occur-
mand). Directory like structures in distributed systems are rence of message not understood errors, but fail to consider
found in an Internet name server. There, an asynchronousynchronization effects.
upda.te_ scheme is. used and thus no update request can lead Following Szyperski37], a contract should contain a
to infinite processing, because only the local cache contenty,ctional specification usually given by pre and post condi-
is propagated. ThHEORBA name service [28] also provides  tions and non-functional requirements often narsedice-
the directory access in such a way that any direct usage Ofeye| or quality of servicecontaining aspects likavailabil-
related directories is e>.<cluded. Instea'd,'the client has to tra~|ty, throughput latency and capacity As demonstrated
verse the structure on its own. By avoiding any global oper- ghove, synchronization is another important aspect, but be-
ation, thesynchronizatiorandterminationproblems can be  pavior modeling is an inherent complex probleBeug-
excluded, but the complexity is left to the clients. nard et al. [4] present a contract hierarchy that system-
Object protocols with states or some kindlidé cycle atically distinguishedasic contractswhich represent the
are common in object-oriented systems. The possible pro-common interface notiotehavioral contractshat provide
cessing orders are specified, for example, by using Harelpre and postconditionsynchronization contractfor sev-
statecharts [19] in OMT [32] and path expressions in FU- eral request synchronization policies aqnghlity of service
SION [12]. The life cycle or protocol describes the possible contractscovering aspects likavailability, throughputla-
non uniform service availabilitgrovided by the object. tencyetc.

open

Provide

Provide

Config Config

T~ -
[closed] [opened] Config

close

D]Q*/ Use abstraction i
barrier possible
close feof] Use Use  synchrononization
Figure 2. The protocol of a read file handle Figure 3. Abstraction barrier

Consider for example the read file handle protocol pre-  When the interaction of arbitrary structured systems of
sented in figure 2. Reading data chunks is only supportedcomponents is considered, tsynchronizatiorns of crucial
afteropen the file. Than, data chunks can fead until the importance. The abstraction assumed for a component (fig-
end of file (eof]) is reached. When the file is closedb&e), ure 3, left-hand-side) is usually characterized bybstrac-
again no read operation is available. T@€oN notation tion barrier (middle), while the real synchronization (right-
[17] is used to describe the resulting state changes and théand-side) does not respect it. A formalism like a finite state
available operations in each state as well as theltregu  machine (FSM) has to be used to describe the behavior as-
state. Hexagons represent possible states and actions compect using states and transitions.
sisting of a call and return step with possible multiple return

) When components are connected, their external synchro-
alternatives are represented by squares.

nization specification has to be combined to obtain the re-

The combination of components during tbemponent  sulting behavior. This explicit combination results already
system desigis different from combining and designing for very restricted system models to serious problems. For
classes during the fine grain object-oriented design. Thethe finite state machinéormalism chosen in figure 3 and
object-oriented techniques support encapsulation by privateevery more expressive formalism, the state space grows ex-
and public access to classes. This style does not fulfill theponential, known as thstate explosion probler{89] for
additional requirements for separati@ORBA, DCOM and system analysis. Formal approaches to system verification
Java RMI use interfaces to deaple specification and im-  and validation try to overcome this problem, but the explicit
plementation, but additional information necessary to en- modeling of interaction includes several aspects like syn-
sure a correct integration is missing. As demonstrated, thechronization distances which contradict this.
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But this problem is also of crucial impact for the system their synchronization behavior are obtained.
design concerninghange impactThe exponential growing By emphasizing the contract idea, the using and provid-
model sizes coincide with an exponential growing number ing components have to agree each contract. The fol-
of implicitimplementation dependencies. The transitive na- jowing parts of a contract description can be distinguished:
ture of synchronization for two connected component sys- a protocol describing the provided coordination sequences
Fems causes this pro.blem. Thus, to change a C_0mp0nenénd afunctional specificatiorgiven by pre and post con-
implementation may influence every other implicitly con-  dition formulas. While the protocol is already considered
nected one. This effect can be prevented by restricting theduring the design phase, the pre and post conditions can
general interaction and structure as done in the case of li-only be used fowerificationand runtime checks. Thus, the
braries. The approach proposed here avoids the demonapproach concentrates on the protocol aspect, which can be
strated problems by using tlabstraction barrier visual- supported by tools for restricted models.
ized in figure 3, when suitable and the explicit specification  The contract notion is of central relevance for the de-
of synchronization if needed. The synchronization can eVeNsign processNierstrasz[26] proposes to add a finite state
be described with different levels of preciseness. This alsomqachine to an object interface to builehular types This
improves the resulting situation for the design of the sys- approach is extended by also integrating the occurrence of
tem. Callbacks or even cyclic structures introduce complex yeturn alternatives anspontaneousontract behavior into
interaction dependencies and the concrete external behavie protocol specification. Thus, instead of error prone di-
ior has to be specified very early in the design. Otherwise gt callback designs, an encoding into the protocol states
both involved components can not be further considered ingnq spontaneous behavior can be used in most cases. Thus
isolation. Thus, the proposed approach does combine the, client obtains an unilateral contract which does not con-
improvement for the analysis and design as well as formaltain any obligations for the client side. The only exception
modeling by supportingbstraction barriersas design prin- is that the replies for pending operation calls must be at least
ciple and as mechanisms to make a formal analysis feasibley tfered by the client to exclude the blocking of the called

component.

4. Contract-based Design

«contract»
) Observable
The presented approach emphasizes contract-based de- | qate()(Data)

sign to improve separation usisgnchronization contracts

extends the contract notion to cover bilateral interactionina
manner which still leads to unilateral dependencies as well
as the explicit design concerning the component contract

[Basic] [Changed]

structures and cycles. Opsenable
The formalism of thedCoN approach [41, 16, 17, 18] .
for seamlessbject-oriented behavior modeling is used also Figure 4. An Observable contract
to cover the behavioral aspects of componen@®CoNs
(Object CoordinationNets) formally defined in [15], a spe- For an example consider tt@bservable contract pre-

cial form of Petri nets[6], are used to describe the possible sented in figure 4, which provides a solution for the ob-
protocol interactions in a visual manner. These nets specifyserver pattern that is still unilateral concerning the synchro-
the intended interaction and allow to describe procedure-hization and typing dependencies. An additional arbitrary
call and message-passing oriented interaction within onestate change for the observable contract is modeled using
formalism. In object-oriented design practice, behavioral aquiescenstep [15]. Its occurrence is neither determined
aspects are often only considered when already implementhor guaranteed. The client may observe the state change
ing the system. Thussynchronizationaspects have not and do anupdate as needed. The still unilateral contract
been well or completely documented during design phasethus can be used to avoid cyclic dependencies as introduced
and the needed information concerning the synchronizationdy the general scheme of a callback presented in figure 1.
with the environment are usually not available during the Thus, the approach integrates bilateral interaction into an
design. In contrast, theCoN approach supports the model- unilateral contract and can further provide maximal degree
ing of synchronization and coordination aspects during the of flexibility for the using side (client).

design. The resulting component specification can be ex- The component behavior can be specified in an oper-
tracted from the component design and not from the imple- ational fashion also using theCoN approach (see [17]).
mentation. On the other hand, if contracts are specified dur-Thus, the contract protocol can be used to simulate parts
ing the decomposition of the system, new general purposeof a system in an abstract fashion by representing the envi-
or application specific component specifications including ronment by its contract protocols. But such explicit design
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including several component internal aspects is not suitableTo provide the demanded component specification, the syn-
in general. A more abstract and implicit solution is needed. chronization ofprovidedandusedcontracts has to be spec-

Traditionally, architectural aspects are often neglected ifi_ed. Two situations for contrqcts are further distinguished.

in object-oriented system design. By considering connec- Either they aresimpleand their guaranteed operations are
tions like connectorsto be a kind of first class elements Not restricted or an additionak synchronization>> stereo-
of an architecture (see [2]), it is achieved that the architec- tYP€ IS used to further restrict the protocol by introducing
tural aspect is specified adequately. In order to apply theSynchronizations with other. provided or used contra(;ts Qf
concept of connectors and teentract principle an UML the same component (see figure 5). These synchronizgtion
<<contract>> stereotype containing an interface describing declarations are added to each gument type and are addi-
a set of interaction steps and a protocol description specify-tionally visualized using a dashed box around every covered
ing the supported interaction orders is introduced. A sin- contract. Each contract can at most take place in one such
gle contract is unilateral and describes what behavior oneSynchronization and thus the dashed rectangles of one com-
interface of a component assures and how another compoPCnent can not share any contract declaration. THneugh

nent can interact with it. For a more detailed description see Synchronization presented in figure 5 describes howthe
[18, 15]. and get operations of the provided contragtOut p are

mapped to the used contract®f the same type. The ac-
tions with a shadow describe the processing of incoming re-

«contract»

InOut quests for the contract while the usual actions specify the
P oata) requested operations for contractThe synchronization is

«synchronization» described using untyped places (circles) andtaafthl pre
Through and post condition arcs. Each requestador get is for-
warded fromp to u and the return is processed vice versa.

«contract»
Check {shared}

check(Data)

Through

Figure 5. Structural extensions to the UML

Config

The contract is used to describe the combination of an in-
terface and @rotocol net In contrast to the UML interface
notion, the contracts are instances and the relations among
them are explicitly modeled as presented in figure 8.

There are two distinct kinds of contracesclusiveand Figure 6. Embedding and depend relation

sharedones. This technical distinction for contracts is in
conformance with the ISO Open Distributed Processing Besides these explicit synchronization descriptions, also
model [21], where implicit and explicit bound objects are an implicit description using synchronization dependency
distinguished. Thexclusivecontracts are interpreted as ex- relation depend-£) is supported by the approach. The
plicit bound objects whilesharedcontracts fit to implicit ~ synchronization is not explicit described and instead any
bound objects (cf. [25]). arbitrary but valid usage afised dependingontracts and

no synchronizatiorwith used independerghot connected)
ceontracts is assumed. If neither an explicit specification nor
such an explicit relation is given, simply the worst case of
a full dependency relation is assumed. This way the tra-
component only the number of served instances is of in- ditional abgtraction barrier between exported provide con-
terest. Each contract is served by exactly one componeni'@cts and imported use contracts can be used. A behavior
and thus the component side cardinality is omitted. For COVer 1S build by all possible I_mplementatioris for each pro-
shared contractalso sharing by multiple clients is allowed Vided contract that synchronizes at most with all used con-

and thus the usual cardinality annotations can be used fof"acts, the provided contract depends e)( Each correct
connections to the clients. A circle with double border is IMPlementation has to respect this behavioral cover. Each

used as shortcut. The annotations for connections to the?'thogonal line to all depend arcs builds a suitable abstrac-
providing component are the same as forgkelusivecase. tion barrier. Butthe provided abstraction is not valid in gen-

For anexclusive contractthe interface circle symbol is
used as a shortcut (see figure 5) and for all usage conne
tions an implicit xor and client side cardinalitys assumed
and thus omitted, too. For the connection to the providing
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eral. The transitive extension of all local depend annotationspreorder describing a correct abstraction or refinement is
has to be acyclic to make the assumed abstraction a correateeded. The given synchronization protocols can be com-
one. pared as labeled nets by considering the label occurrences.
The underlying formalism to determine a valid refinement
or abstraction step concerning the component synchroniza-
tion is then reduction[7], which is the coarsest relation
w.r.t. preserving deadlock-freeness (see [40]). The symbol
= is used wher@\ C B states that is a valid refinement

of B. The abstraction from finite internal interaction can be
used to replace a synchronization combination by a single
more abstract version where the double covered contracts
are omitted (see for example figure 10).

As demonstrated in figure 6, the depend relation restricts
the valid embedding of a component. But this way, an
explicit and complete synchronization specification can be
avoided. The provided contraCbnfig is used to configure
the component and thus should be implemented in a fashio
that does not rely on the uséde contract. In contrast, the
Provide contract will rely on the correct responses of the
Use contract. This dependency is specified by defining a
component specific depend relation” using dashed arcs.
Thus, the possible component behavior is already restricted
concerning the possible synchronization dependencies, bub. Example
still a whole bunch of possible internal component behav-

iors are suitable solutions. To give an example, the common pipeline processing of

? Provide

? Provide

? P:rovide

? Provide

Comp

depend?

e
Config

+Comp

fdepend

e
Config

* Cdmp

Config ;

Comp

éﬁ Use

v
Cg Use

a compiler is considered. The structure may consist of a
pre-processor phase for macro expansion as well as a com-
piler with lexical analysis, syntactical analysis, semantical
analysis, code generation and assembly stage. This soft-
ware architecture style provides a high degree of flexibility
and distinct stages may be exchanged on demand, e.g., the
assembly stage to adjust the compiler to a certain hardware.

By specifying the data format for each stage titos, each

Figure 7. Spectrum of possible specifications

stage does only communicate with its predecessor and suc-

cessor and thus the coupling is minimized. In order to re-
duce the example complexity the same general interface for
The provided mechanisms for contract specification al- each stage is assumed. Two solutions for a general pipeline
low to specify the contract behavior and their synchroniza- structure are presented.

tion with several levels of granularity as presented in fig-
ure 7. Starting during the component system design, the
relation may be left unspecified and thus a complete de-
pend relation connection of each provided interface with all
usedones is assumed. When further knowledge about the
separation and wanted parallel availability for inseds is
given, a refined view by specifying an explicit depend re-
lation is possible. If the planned embedding enforces the
explicit modeling of synchronization aspects concerning a
subset of the component contracts, this can be done using a
<<synchronization>> stereotype. Nowslicesof the com-

«contract»
Process

init(Option[])(Option[])
process(Data):(Data)

eset()
proccss

init
reset

Pipeline

Process

«contract»
Config
getMode():(Data)

setMode(Mode)
reset()

Config

4@

ponent behavior can be specified in an independent fashion. Process Process

A complete behavior description is also possible using a Stage2
single synchronization element that covers all provided and

used contracts. Thus, also a behavior description enclos- ]

ing the whole behavior as described in figure 3 (right-hand- Config Config

side), is possible. The provided spectrum allows to specify
the behavior in the adequate level of granularity during the
decomposition of the design. For already fixed components,
e.g. off-the-shelf, provided by others, a specification of suit-
able preciseness may be chosen and can be used to emb
them into a design.

Figure 8. Pipeline with coordinator

The first way to build a pipeline structure is to use filter

%ﬁ’ transformer functionality in form ofemote procedure
calls. The resulting components are very flexible concern-

To provide a sound framework to handle component ing further embedding and can be used for arbitrary requests
protocols and their synchronization, the correct behavioralor in a coordinated fashion like the pipeline structure. A
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pipeline can be build using a specific coordinator compo- and a corresponding return step. For exampleptielose
nent, as demonstrated in figure 8 for the trivial case of two post condition is a pre condition of tlreclose return step.
stages. Itis remarkable that the structure does not reflect th& he resulting processing specification describes the explicit
pipeline and instead the usage relationship from the coordi-buffering behavior and thus even cyclic pipelines like ring

nator component teach stage is made explicit. structures may be build.
This flexibility is a suitable reason to choose this so-
lution, while efficiency reasons make this solution sub-  *°% I  Stage ___CombineStage2 | CombineSiages
. . . H st y H H H y
optimal. The appliedemote procedure calhteraction and e, PN qgSream Do (irean | Cstveagy(Siean
the central coordination using an additional coordination " Trahstorm| [ “ransform ~ Trangform? " Trangformx
component results in doubling the communication and a ; ; - -
possiblebottleneckior long pipelines. The bottleneck can " depend " depend " depend + depend
be avoided by using a tree like coordinator structure which o] = 1 4
further increases the communication overhead. Each node %Use gﬂ)se C‘[ﬁm gg’se

in the tree provides the same synchronization type as a leaf - e ——
. . . «synchronization» i
and abstracts from the inner pipeline structure. CombineStage? CombineStages

A more efficient design can be build by avoiding the
overhead of moving the data to the pipeline coordination
component and vice versa. Instead, the stage components
are directly connected and each qmment has to provide
an input and output stream (see figure 10).

«contract»
Stream

Start(Option[])
put(Data)

close) Figure 10. Pipeline of Transform components

start «synchronization»
ol esin Sizge
[closed] fopen] put el

il ;

For this non hierarchical structure it can also be ab-
stracted from two or more stages by combining their com-
plex contracts and abstracting from their inner communi-
cation. See figure 10 for the resulting behavioral cover
of two synchronously connectetage synchronization re-
strictions. The resulting common behavior of two stages
has to describe the internal buffering in a concrete fash-
ion. When an arbitrary but non-determined internal buffer-

depend

;
O use ing like described by the second abstraction, is used, the re-

. sulting behavioral cover can be combined and used only ina
Figure 9. Transform component restricted way. Consider a cyclic pipeline case and combine

n of these abstract stage components. For a secure process-

The general scheme of independent provided contracting at most: — 1 data packages can be inserted. Otherwise
and a simple depend relation is not sufficient any more. the cycling might be blocked and thusor more packages
Instead, the complex contract notion specifying the com- may notwork. For such ring like structures abstracting from
bined behavior of sets of provided and used contracts isthe buffering effect is not always useful. When abstracting
needed. For the provided contrastand the used con- from the buffer depth the information is lost and not avail-
tractout a specific combined behavior is described in fig- able. The ring structure will only work if at least one buffer
ure 9. This complex contract behavior is realized using a element is still empty. If all buffer capacities are exhausted,
<<synchronization>> Stage, which synchronizes thie and each stage will be blocked by the next one and no progress
out contracts of a single component. An incomsigrt re- is possible any more. Thus, abstracting from the buffering
quest forin asynchronously triggersstart request forout depth may be not appropriate.
and an internal place is initialized with a token. Afterwards  The described two behavio@mbinedStage2 and the
eachput is forwarded and returns immediately when no old more abstract versio@ombinedStages are valid abstrac-
put request forout is pending. Closing the contract is de- tions for the behavior preorde_§. Their nets describe
layed until theout contract confirms thelose request. Note,  the explicit buffering where «x denotes: token and the re-
that the actions are a shorthand notation for two steps, a calkource of typent is initially filled with an arbitrary value
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n. This process of abstraction can also be reverted and theproach, the protocol is used to describe the bilateral signal
more concrete version can be considered @giaemenbf exchange and no notion for behavioral abstraction is consid-
the coarser description. Hence, a pipeline build by severalered. The structural description techniques of the UML are
CombinedStages can be refined to &ombinedStage2 or used for the structural part of architecture descriptions. For

Stage. behavior specification, theCoN approach is used, because
it provides aseamlesintegration of used or provided con-
6. Related Work tracts (see [17]). The behavior description techniques of the

UML are not capable of these aspects. For a comparison
between thedCoN approach and the behavior formalisms

¢ Thefp:\:'ese?ted ggprloach ?xtetn?st';\he cc:jnc?_mgngar q of the UML see [18]. Remarks concerning the great variety
ypesof NierstrasZ26]. In contrast to this reduction-base of other proposed object-oriented Petri net notations can be

approach, do trace-based notions [30, 25] not consider SYNtound in [17].
chronization effects and exclude only message not under-

stood errors. To reduce cycles in the usage graph, the uni-

lateral contract notion is extended to include bilateral in- 7. Conclusion
teraction. This way most of the error prooallbackhan-

dling can be handled in a more suitable fashion. The pre-  The presented approach provides mechanisms to achieve
sented protocol formalism additionally covers distinct syn- 5 higher degree of independence, to exclude implicit im-
chronization with the request replies, whiNeerstrasavork  plementation dependencies and make requirements and the
is restricted to request acceptance. This way oracle like re-provided behavior of components more concrete. The
quests and the influence of distinguished replies on the re-ocon formalism together with the presented extensions
sulting protocol state can be incorporated, too. The conceptprovides a suitable framework for the described compo-
of explicit contract synchronizations and an implicit con- nent design techniques. An external behavioral specifica-
tract depend relation further extend the framework tOWﬁrdStion technique usingynchronization sliceand adeclara-
a flexible specification tool for component synchronization. tive dependelation for implicit synchronization specifica-
The integration into the anaIySiS and design level inSteadtion is presented_ From the perspective of formal model
of the programming language or a formal calculus context specification, sseamlesgransition from totally separated
is another distinction. The approach allows to consider syn-contracts and a dependency relation over slices of partial be-
chronization and protocol aspects, which are of great impor-havior specifications to a complete external behavior spec-
tance for the architecture design, already during the analy-ification is supported. The unilateral contracts with possi-
sis and design. It supports the specification for incompletep|y shared protocols refining the connector concept allow to
system, refinement and explorative design evaluations byanalyze the quality of an architecture concerning decompo-
simulation. sition on well established object-oriented knowledge. The
Holland et al. [20] suggest a contract notion that ab- formal description of interaction properties by object coor-
stracts from performance and resource consumption asdination nets allows the analysis of behavioral properties

pects and includesafetyand progress conditionswhich  and possible interaction scenarios can be simulated and vi-
are needed to predict the component behavior from a clientsyalized.

perspective. So calletype obligationsdemand abstract
attributes and interface aspects for each participant while
causal obligationglescribe the ordered sequences for ac-
tions and their effect on the attributes. The CATALYSIS
[14] approach emphasizes a pre and post condition concept [1] Corba Components. (final submission), OMG TC Document
but also contains a comparable concept as extension and  0rbos/99-02-05, Mar. 1999.

suggests statecharts or sequence expressions to specify thd2] R. Allen and D. Garlan. A Formal Basis for Architectural
order of internal called actions calledised actions The Connections.ACM Transactions on Software Engineering
general concept to describe object behavior for a group of - ?ng:f:;?:izggé]“g;;a;' U. Invine, and H. Frysiy
objects is promising, but the resulting system is more suit- ’ o T ’ ' i
abjle for frapmeworkg. The superpositigonyof such interaction pertext Transfer Protocol — HTTP/LOIESG, May 1996.

. . RFC 1945.
concepts is not always conflict free and the pre and post [4] A.Beugnard, J.-M. Jezequel, and D. Watkins. Making Com-

conditions or invariants make an automatic tool support im- ponents Contract AwaréEEE Computer32(7):38—45, July
possible. In the area of object-oriented design for real-time 1999.

systems, the ROOM [33] method also uses protocols de- [5] G. Booch.Object-Oriented Analysis and Design with Appli-
fined for a group of objects and signal based protocol roles cations Addison-Wesley, Menlo Park CA, 1993. (Second
called ports as connectors. In contrast to the presented ap-  Edition).
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