
Period Optimization for Hard Real-time
Distributed Automotive Systems

Abhijit Davare1, Qi Zhu1, Marco Di Natale2,
Claudio Pinello3, Sri Kanajan2, Alberto Sangiovanni-Vincentelli1

1 University of California, Berkeley
2 General Motors Research
3 Cadence Berkeley Labs

ABSTRACT
The complexity and physical distribution of modern active-safety
automotive applications requires the use of distributed architec-
tures. These architectures consist of multiple electronic control
units (ECUs) connected with standardized buses. The most com-
mon configuration features periodic activation of tasks and mes-
sages coupled with run-time priority-based scheduling. The correct
deployment of applications on such architectures requires end-to-
end latency deadlines to be met. This is challenging since dead-
lines must be enforced across a set of ECUs and buses, each of
which supports multiple functionality. The need for accommodat-
ing legacy tasks and messages further complicates the scenario.

In this work, we automatically assign task and message periods
for distributed automotive systems. This is accomplished by lever-
aging schedulability analysis within a convex optimization frame-
work to simultaneously assign periods and satisfy end-to-end la-
tency constraints. Our approach is applied to an industrial case
study as well as an example taken from the literature and is shown
to be both effective and efficient.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]: Real-time
and embedded systems

General Terms
Algorithms, Performance

Keywords
automotive systems, activation period, end-to-end latency

1. INTRODUCTION
In the automotive domain, modern active-safety applications con-

sist of complex end-to-end computations that collect data from 360o

sensors around the vehicle to understand the positioning of sur-
rounding objects and detect hazardous conditions. On hazard de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM ACM 978-1-59593-627-1/07/0006 ...$5.00.

tection, active safety functions attempt to inform the driver or pro-
vide control overlays to reduce the risk. Most of these functions are
high-level controls which drive low-level actuation loops, but they
are nevertheless subject to timing constraints.

Such active-safety applications are typically run on distributed
architectures. Distributed architectures supporting the execution
of hard real-time applications are common not only for automo-
tive, but also for avionics and industrial control systems. To pro-
vide design-time guarantees on timing constraints, different design
and scheduling methodologies are used. For instance, avionics sys-
tems are often built based on static, time-driven schedules. Due to
resource efficiency and ultimately price concerns, many automo-
tive systems are designed based on run-time priority-based sched-
uling of tasks and messages. Examples of standards supporting this
model are the OSEK operating system standard [13] and the CAN
bus arbitration model [2].

Different interaction models may be implemented at the interface
between any two resource domains (such as an ECU and a bus).
The simplest interaction model consists of the periodic activation
with asynchronous communication, where all interacting tasks are
activated periodically and communicate by means of asynchronous
buffers based on non-blocking read/write semantics. Similarly, mes-
sage transmission is triggered periodically and each message con-
tains the latest values of the signals that are mapped into it.

More specifically, the execution model considered in this work
is the following. Input data (generated by a sensor, for instance) is
available at one of the system’s ECUs. A periodic activation signal
from a local clock triggers the computation of an application task
on this ECU. Local clocks on different ECUs are not synchronized.
The task reads the input data, computes intermediate results, and
writes them to the output buffer from where they can be read by
another task or used for assembling the data content of a message.
Messages - also periodically activated - transfer the data from the
output buffer on the current ECU over the bus to an input buffer on
another ECU. Tasks may have multiple fan-ins and messages can
be multicast. Eventually, task outputs are sent to a system output
(an actuator, for instance).

When implementing feedback control applications in this fash-
ion, the (quasi) periodic stream of actuator commands may be based
on sensor data taken a variable number of samples in the past, de-
pending on how the various clocks align. For this reason, the con-
trol algorithms are typically designed favoring robustness over per-
formance. Techniques like time-stamping and sequence counters
are sometimes used at the application level to compensate for vari-
ations and to improve robustness. Nonetheless, hard bounds on la-
tency and periodicity are provided as implementation requirements.

278

16.1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

Allocation

Priority Assignment

Period Assignment

Deployment

Mapping

Application Architecture

x ms

Figure 1: Period assignment within the overall design flow

1.1 Design Flow
The period assignment problem addressed in this work tack-

les a part of the larger design flow shown in Figure 1. The de-
sign flow is based on the Y-chart approach [8], where the appli-
cation description and architectural description are initially sepa-
rated, and joined together later in an explicit mapping step. In the
application, nodes represent function blocks and edges represent
data dependencies, which consist of signal information. The ap-
plication description is further characterized by end-to-end latency
constraints along certain paths from sources to sinks. The archi-
tectural description is a topology consisting of ECUs connected
with buses. In this work, the ECUs are assumed to run OSEK-
compliant operating systems which have preemptive priority-based
run-time task scheduling. The buses use the standard CAN bus ar-
bitration model, which features non-preemptive priority-based run-
time message scheduling.

Mapping deploys functional blocks to tasks and tasks to ECUs.
Correspondingly, signals are mapped into local communication or
messages that are exchanged over the buses. We further divide the
mapping step into three stages: allocation, priority assignment, and
period assignment. Allocation is the first stage and assigns tasks
to ECUs and messages to buses. Each task is allocated to a single
ECU while each message is allocated to a single bus. The second
stage assigns priorities to both tasks and messages. The last stage
assigns periods to task and messages.

In this work, we restrict the focus to the period assignment stage.
Given an allocation and priority assignment for both tasks and mes-
sages, our approach automatically assigns periods for all tasks and
messages in order to satisfy the end-to-end latency requirements.
The results of period assignment may trigger design iterations over
the allocation and/or priority assignment stages when a feasible so-
lution cannot be found or when the design can be further improved
by changing the allocation or reassigning the priorities (for exam-
ple, following the rate monotonic rule).

1.2 Prior Work
Both static and dynamic priority, distributed as well as central-

ized scheduling methods have been proposed in the past for dis-
tributed systems. Static and centralized scheduling is typical of
time triggered design methodologies, like the Time-Triggered Ar-
chitecture (TTA) [10] and its network protocol TTP and of im-
plementations of synchronous reactive models, including Esterel
and Lustre [1]. Also, the recent FlexRay standard [5] for high
speed communication in automotive systems provides two trans-
mission windows, one dedicated to time-driven periodic streams
with static design-time assignment of transmission slots, and the
other for asynchronous event-driven communication.

Priority-based scheduling is also very popular in control appli-

cations and is supported by the native CAN network arbitration
protocol. The worst case transmission latencies of CAN messages
(with timing constraints) have been analyzed and discussed in past
research work [18]. Also, the OSEK operating system standard
for automotive applications supports not only priority scheduling,
but also resource sharing with predictable blocking times. Priority-
based scheduling of single processor systems has been thoroughly
analyzed with respect to worst case response time and feasibility
conditions [7].

End-to-end deadlines have been discussed in research work in
the context of both single-processor as well as distributed architec-
tures. The synthesis of task parameters (activation rates and off-
sets) and (partly) of task configuration itself in order to guarantee
end-to-end deadlines in single processor applications is discussed
in [6]. Later, the work has been tentatively extended to distributed
systems [16] where a set of design patterns are applied to meet the
deadlines using offset-based scheduling.

The periodic activation model with asynchronous communica-
tion can be analyzed quite easily in the worst case, because it al-
lows the decomposition of the end-to-end schedulability problem
into local problem instances, one for each resource (ECU or bus).
This is not true in the case of data-driven activation models, where
local schedulers have cross dependencies due to the propagation of
activation signals. In this case, the problem of distributed hard real-
time analysis has been first addressed by the holistic model [14]
based on the propagation of the release jitter along the computation
path.

While the prior work provides analysis procedures with reduced
pessimism, the synthesis problem is today largely open, except for
[15], where the authors discuss the use of genetic algorithms for
optimizing allocation and priority assignments with respect to a
number of constraints, including end-to-end deadlines and jitter.

2. REPRESENTATION
The systems we consider can be represented as a weighted di-

rected graph (O,L) and a set R. O is the set of vertices denoting
the schedulable objects (tasks and messages), L is the set of edges
representing the flow of information (data dependencies), and R
is a set of shared resources supporting the execution of the tasks
(ECUs) and the transmission of messages (buses).

• O = {o1, . . . , on} is the set of schedulable objects imple-
menting the computation and communication functions of
the system. An object oi represents either a task or a mes-
sage and is characterized by two parameters: a maximum
time requirement ci and a resource Rj to which it is allo-
cated (oi → Rj). All objects are scheduled according to
their priority and a total order exists between the priorities of
all objects on each resource. The object is periodically acti-
vated with a period ti. ri is the worst case response time of
oi, representing the largest time interval from the activation
of the object to its completion in case it is a task, or its arrival
at the destination in case it is a message. The response time
of an object includes its own time requirement as well as the
time spent waiting to gain access to the resource.

• L = {l1, . . . , lm} is the set of links. A link li = (oh, ok)
connects an object oh (the source) to object ok (the sink).
One object can be the source or sink of many links. At the
end of its execution or transmission, an object delivers results
(task) or its data content (message) on all outgoing links. For
any link, the sink object is activated by a periodic timer and,
when it executes, reads the latest signal value that was trans-
mitted over the link.

279

R R R1 2 3

1 2 3
t t t1 2 3

t

r

t

t

r

r

1 1

2 2

33

End−to−End latency

o o o

Figure 2: End-to-End Latency Calculation

• R = {R1, . . . , Rz} is the set of logical resources that can
be used by the objects to carry out their computations. Re-
sources are either ECUs or buses and are scheduled with a
priority-based scheduler.

A path p is a finite sequence of objects (p ∈ O∗) that, starting
from oi = src(p), reaches oj = snk(p) with a link between ev-
ery pair of adjacent objects. oi is the path’s source and oj is the
sink. Sources are activated by external events, while sinks activate
actuators. Multiple paths may exist between each source-sink pair.
The worst case end-to-end latency incurred when traversing a path
p is denoted as `p. The path deadline for p, denoted by dp, is an
application requirement that may be imposed on selected paths.

2.1 End-to-End Latency
The worst case end-to-end latency can be computed for each path

by adding the worst case response times and the periods of all the
objects in the path:

`p =
X

k:ok∈p

tk + rk

In the worst case, as shown in Figure 2, an external event arrives
immediately after the completion of the first instance of task o1.
The event data will be read by the task on its next instance and the
result will be produced after its worst case response time, that is,
t1 + r1 time units after the arrival of the external event. Since there
is no coordination between tasks on separate resources, the situa-
tion repeats in the worst case for each link in the path. To get more
precise results, the best case response time vi of any predecessor
object oi should be subtracted from the period ti in the previous
formula. However, in most cases, including the case studies in Sec-
tion 4, vi � ti and vi can be ignored.

For multiple communicating tasks with harmonic periods on the
same ECU, the analysis can be less pessimistic if we assume that
the designer can select the relative activation phase of all tasks. In
case the sink task is activated with a relative phase with respect to
the source equal to its worst case response time, then the contribu-
tion of the pair to the end-to-end latency can possibly be reduced.
Let o1 and o2 be two tasks on the same ECU that appear (in that or-
der) in a path with an end-to-end deadline. If t1 = kt2 is satisfied,
where k ∈ N+, then t2 is oversampled-harmonic with respect to
t1. Similarly, if kt1 = t2, where k ≥ 2, then t2 is undersampled-
harmonic with respect to t1. Latency analysis for these situations
is developed in [12] and summarized in Table 1.

Condition Path Fragment Latency
Non-local or non-harmonic r1 + t1 + r2 + t2
Local oversampled-harmonic r1 + t1 + r2

Local undersampled-harmonic r1 + r2 + t2

Table 1: Latency over local harmonic path fragments

2.2 Response Time Analysis
The key in adjusting object periods to meet end-to-end latency

constraints is determining the relationship between object periods
and response times. The relationships are similar, but not identical,
for tasks and messages. The analysis in this section summarizes
work from [7, 18].

2.2.1 Task Response Times
In a system with preemption and priority-based scheduling, the

worst case response time ri for a task oi ∈ T depends on the com-
putation time requirement ci for the task itself as well as the inter-
ference from higher priority tasks on the same resource. ri can be
calculated using the following formula:

ri = ci +
X

j∈hp(i)

�
ri

tj

�
cj ∀oi ∈ T (1)

Where j ∈ hp(i) refers to the set of higher priority tasks on
the same resource. Note that the term d ri

tj
e indicates the maximum

number of preemptions from a higher priority task j.

2.2.2 Message Response Times
Worst case message response times are calculated similarly to

worst case task response times. The main difference is that mes-
sage transmission on the CAN bus is not preemptable. There-
fore, a message oi may have to wait for blocking time bi, which
is maxj∈lp(i) cj where lp(i) is the set of lower priority messages
that are allocated to the same bus as oi. Likewise, the message itself
is not subject to preemption from higher priority messages during
its own transmission time ci. The response time relationship is:

ri = ci + bi +
X

j∈hp(i)

�
ri − ci

tj

�
cj ∀oi ∈M (2)

3. PERIOD OPTIMIZATION APPROACH
From the relationships given in Equations 1 and 2, it is apparent

that the response time of each object is related to the periods of
higher priority objects on the same resource. Intuitively, reducing
the period of an object will increase the response times of other
objects with lower priorities on the same resource. The end-to-end
latencies of multiple paths may be affected as a result.

If object periods are modified individually, then achieving con-
vergence is difficult, since any change to one period affects many
others. Instead, we concentrate on mathematical programming (MP)
techniques, which simultaneously consider modifications to the pe-
riods of all objects.

In MP, the system is represented with parameters, decision vari-
ables, and constraints over the parameters and decision variables.
An objective function is defined over the same set of variables. Ge-
neric solvers can be utilized to find the optimal solution. The com-
plexity of finding the optimal solution depends upon the variable
types as well as the form of the objective function and constraints.

The benefits of a MP optimization approach are particularly rel-
evant to the period synthesis problem. First, in assigning periods,
there are a large number of interdependencies between the objects
on different paths. Considering one path at a time is not guaran-
teed to find a feasible, let alone optimal, solution. MP approaches
consider all constraints simultaneously. Next, and more impor-
tantly, MP approaches can be customized with system-specific is-
sues by simply adding additional constraints. Whereas other so-
lution mechanisms are brittle to changes in the problem assump-
tions, MP approaches can adapt to different problem assumptions

280

or partial solutions. For example, the existence of legacy tasks and
messages whose periods are fixed or otherwise restricted can be
handled quite easily with additional constraints.

The main difficulty with using MP approaches lies in finding a
formulation that is sufficiently accurate to capture the behavior of
the system and yet remains amenable to efficient solving.

This section is organized as follows. First, two specialized forms
of mathematical programming - geometric programming (GP) and
mixed-integer geometric programming (MIGP) are described in Sec-
tion 3.1. The period optimization problem is defined as an MIGP in
Section 3.2. A GP approximation is developed in Section 3.3 and
approximation error is reduced by an iterative procedure described
in Section 3.4.

3.1 Geometric Programming
Geometric programming (GP) is a special form of convex pro-

gramming [4]. GPs have polynomial time computational complex-
ity and can be solved very efficiently by a variety of off-the-shelf
solvers. After [3], a GP in standard form is:

minimize f0(x)

subject to fi(x) ≤ 1 i = 1, . . . , m

gi(x) = 1 i = 1, . . . , p

where x = (x1, ..., xn) is a vector of positive real-valued deci-
sion variables. f is a set of posynomial functions, while g is a set
of monomial functions. A posynomial is the sum of monomials,
where a monomial function m has the following form:

m(x) = cxa1
1 xa2

2 . . . xan
n c > 0, ai ∈ R

If x contains both integral and real-valued decision variables, the
resulting problem is a mixed-integer geometric program (MIGP).
Unlike GPs, MIGPs are not convex and cannot be efficiently solved.

In this work, we make use of the gpposy [9] solver to solve GPs.
Solver interfacing is handled by the Yalmip [11] framework, which
can overlay a branch-and-bound approach to solve MIGP problems
as well.

3.2 Problem Definition

min.
P

oi∈O ri (3)

s.t.
`p

dp
≤ 1 ∀p ∈ P (4)

ci+
P

j∈hp(i) zijcj

ri
≤ 1 ∀oi ∈ T (5)

ci+bi+
P

j∈hp(i) zijcj

ri
≤ 1 ∀oi ∈M (6)

ri
ti
≤ 1 ∀oi ∈ O (7)P

i:oi→Rj

ci
ti×uj

≤ 1 ∀Rj ∈ R (8)
ni
ti
≤ 1 ti

xi
≤ 1 ∀oi ∈ O (9)

ri
tj×zij

≤ 1 ∀oi ∈ T (10)
ri

tj×zij+ci
≤ 1 ∀oi ∈M (11)

The period assignment problem is defined over the following
sets: the objects O, which are partitioned into messages M and
tasks T , the set of resources R, and the paths with end-to-end
constraints P . All objects oi ∈ O have associated computation
time parameters ci, lower bounds on periods ni, and upper bounds
on periods xi. Additionally, messages oi ∈ M have associated
blocking times bi. Path deadlines dp are specified for all p ∈ P .

uj are the maximum permitted utilization values for all resources
Rj ∈ R. The main decision variables for all oi ∈ O are the peri-
ods ti while the response times ri and interferences zij ∈ Z+ are
used as helper variables.

The objective function can be selected according to the optimiza-
tion goals. (3) corresponds to the minimization of average response
time over all objects in the system. However, a different choice
related to the extensibility of the solution can also be used. For
instance, minimizing the maximum resource utilization.

Path latencies are met by (4). Response times are related to com-
putation times and periods by (5) and (6), following the relation-
ships from (1) and (2) respectively.

(7) ensures that there is no queuing of jobs, i.e. response times
are lower than object periods. Resource utilization is bounded by
(8). Minimum and maximum execution periods of tasks and mes-
sages may be specified separately – especially for feedback control
applications – with (9).

Finally, the number of interferences zij (from a higher priority
object j to a lower priority object i on the same resource) for tasks
and messages are specified with (10) and (11). Note that the inte-
grality of the zij variables causes the problem to be an MIGP.

Depending on system-specific situations, additional constraints
may be added that relate the periods of different objects. For in-
stance, periods for two objects oi and oj may be constrained to be
equal, i.e. ti = tj , or with a given oversampling (ti = ntj) or un-
dersampling (mti = tj) ratio (where n and m are positive integer
constants). A more generic requirement might be to ensure that the
objects are undersampling or oversampling with some unknown in-
teger proportionality k between the periods. For example, ti = ktj

where k ∈ Z+. If such constraints are defined over adjacent tasks
on the same resource, the less conservative analysis from Table 1
can be used.

3.3 Approximation
Since MIGP problems are very difficult to solve, we approximate

the MIGP period optimization problem with a GP formulation. In
order to cast the problem into a GP form, the interference variables
zij are relaxed to real-valued variables and parameters 0 ≤ αij ≤
1 are added to them. For clarity, let the approximated response time
variables be si. (10) and (11) from the MIGP become:

si
tj(zij+αij)

≤ 1 ∀oi ∈ T (12)
si

tj(zij+αij)+ci
≤ 1 ∀oi ∈M (13)

Thus, the GP approximation consists of the objective function
(3) with si in place of ri, constraints (4)-(9) (also with si in place
of ri) and constraints (12) and (13).

If the values of all αij are 1, then the approximation is always
conservative, i.e. si ≥ ri. If some αij < 1, no such guarantees
can be made. Clearly, the accuracy of the approximation depends
upon the α parameters that are used.

3.4 Reducing Approximation Error
The α parameters in the GP formulation represent the degree

of conservatism used for the approximation of the response times.
Setting all αij = 1 is a safe, but pessimistic approximation that
may produce an infeasible problem instance. In this section, an
iterative procedure is presented to find α parameters that preserve
feasibility with reduced conservatism.

Given some set of α parameters, if the GP is feasible, optimal
ti values from the GP solution can be obtained. We can obtain the
ri values by substituting these ti values into (1) and (2). For all

281

oi ∈ O, let ei represent the relative error between the estimated
and actual response times, i.e. ei = si−ri

ri
. If all ei ≥ 0, then the

optimal GP solution results in a feasible solution to the exact prob-
lem, while if all ei = 0, then the GP solution is not only feasible,
but optimal. If some ei < 0, then the GP has underestimated some
response times and (4) or (7) in the exact problem may have been
violated.

An iterative procedure can be used to assign the α parameters. A
new GP problem is solved during each iteration, and the ei values
are used to recalculate the α parameters for the subsequent itera-
tion. The procedure is summarized in Algorithm 1.

Algorithm 1 ITERATIVE PERIOD ASSIGNMENT PROCEDURE

1: Input Parameter = f // acceptable error bound
2: ∀oi ∈ O, αij = 1
3: while (true) do
4: (s, t) = GP(α) // solve the GP
5: if infeasible then
6: ∀oi ∈ O, αij = 1

2
αij

7: else
8: vior = 0, viol = 0
9: for all oi ∈ O do

10: calculate ri

11: ei = si−ri
ri

12: if (ri > ti) then vior = vior + 1
13: αij = αi − ei

14: ensure 0 ≤ αij ≤ 1
15: ∀p ∈ P , if `p > dp then viol = viol + 1
16: if viol = 0∧ vior = 0∧ (∀oi ∈ O, max(|ei|) < f) then exit

The input parameter to the procedure is f , which represents the
maximum permissible estimation error. At initialization, all αij

are conservatively assigned to 1. Inside the loop, the GP problem
is solved and the estimated response times and assigned periods are
obtained. If the problem is infeasible, then all α values are scaled,
and a new GP problem is solved during the next iteration. If the
GP problem in the current iteration is feasible, then the exact re-
sponse times are calculated with (1) and (2). The relative error ei

and possible violations to (7) can then be calculated. Next, αij

values are adjusted based on ei, and are saturated either at 0 or 1
if necessary. After all exact response times have been calculated,
violations to path constraints (4) can be checked. If none of the
constraints have been violated, and if the maximum absolute esti-
mation error is lower than the limit for all objects, the procedure
terminates, otherwise the next iteration is executed with the modi-
fied α values. An iteration limit may also be specified.

4. CASE STUDIES
The period optimization approach is validated in this section

with two case studies. The first is an experimental vehicle system
that incorporates advanced active safety features while the second
is a fault tolerant distributed system taken from [17].

4.1 Active Safety Vehicle
The architecture consists of 29 ECUs connected with 4 CAN

buses, with speeds ranging from 25kb/s to 500kb/s. The vehicle
supports advanced distributed functions with end-to-end computa-
tions collecting data from 360◦ sensors to the actuators, consisting
of the throttle, brake and steering subsystems and of advanced HMI
(Human-Machine Interface) devices. A total of 92 tasks are exe-
cuted on the ECU nodes, and 196 messages are exchanged over the
four buses. Worst case execution time estimates have been obtained
for all tasks. Message length and bus speed is used to calculate the
maximum transmission time for all CAN messages. Each ECU is

400

500

600

700

L
a
te

n
c
y,

 m
s

Latency Before and After Period Optimization

Manual

Period Optimization

Deadlines

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12

L
a
te

n
c
y,

 m
s

Source-Sink Pair

Figure 3: Period optimization meets all deadlines

allocated from 1 to 22 tasks and each CAN bus is allocated from 14
to 105 messages. The system graph contains a total of 604 links.

End-to-end deadlines are placed over paths between 12 pairs of
source-sink tasks in the system. Most of the paths follow a six-stage
structure: sensor preprocessing & sensory fusion, object detection,
selection of target objects in the environment, core functions, vehi-
cle longitudinal & lateral controls with actuator arbitration & plan-
ning, and, finally, low-level loops of the actuators themselves. Most
of the intermediate stages are shared among the tasks. Therefore,
the graph is quite densely connected and despite the small number
of source-sink pairs, there are 222 unique paths among them.

The deadline is set at 300 ms for 9 of these source-sink pairs, at
200 ms for two pairs, and at 100 ms for one pair. For 9 pairs of
local tasks over 2 ECUs, harmonicity constraints with fixed integer
constants are present. Some task and message rates are bounded
explicitly, due to controller requirements and maximum sampling
rates from sensors. To provide for future extensibility and a safety
margin, maximum utilization parameters ui from (8) are set at 70%
for all ECUs and buses.

The system configuration used is a snapshot from an early study
of the possible architecture configurations, in which the periods of
task and messages had not been finalized. The preliminary manual
estimates are based on designer intuition. These initial period as-
signments, in the worst case, do not meet any of the deadlines as
shown in Figure 3.

Starting with all the α parameters equal to 1, we perform a GP
optimization. The results of this optimization are also shown in
Figure 3. All 222 paths between the 12 source-sink pairs meet their
deadlines. The GP problem takes 24 seconds to solve on a 1.6
GHz Pentium M processor with 768 MB of RAM. The GP period
assignments are quite different from the manual ones; the average
period increases by 90%.

To determine the effectiveness of the iterative procedure, we can
track the reduction in max(|ei|), ∀oi ∈ O across several iterations.
The results are shown in Figure 4. 15 iterations of Algorithm 1 are
shown on the x-axis. The y-axis (with a logarithmic scale) shows
the maximum absolute estimation error for the response time esti-
mate used within the GP formulation. The average estimation er-
ror, not shown, drops from 6.98% to 0.009% during these same 15
iterations. Overall, the maximum estimation error is reduced by a
factor of 102, while the average estimation error decreases by a fac-
tor of 780. The discrepancy between the approximated (

P
oi∈O si)

and actual (
P

oi∈O ri) objective values drops from 27.1% during
the first iteration to 0.0045% during the final iteration.

282

10

100

m
a

x
 |
e

i|
,

%
Iterative Reduction of Maximum
Response Time Estimation Error

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
a

x
 |
e

i|
,

%

Iteration #Iteration #

Figure 4: Iterative reduction in maximum estimation error

Since the runtime per iteration is independent of the α values,
the total solver time for 15 iterations is 6 minutes. Even though the
α values are reduced below 1, (4) and (7) from the eaxct problem
are not violated during any of the 15 iterations.

Finally, we can relax the 9 harmonicity constraints from fixed
integer constants to integer variables. This changes the problem
from a GP to a Mixed Integer GP. The bnb solver within Yalmip
applies a branch-and-bound procedure to find the solution, and the
solution time increases to 227 seconds per iteration.

4.2 Fault-tolerant Distributed System
This system is based on the example given in [17] and contains

task replicas allocated to different ECUs for fault tolerance. The
system consists of 43 tasks and 36 messages deployed onto an ar-
chitecture with 8 ECUs and a single bus. The bus is assumed to run
at 250kb/s. Initial period assignments for tasks are taken from the
example, while initial message periods are assumed to be equal to
the source task periods. Task and message priorities are assigned
using the rate monotonic rule. The initial end-to-end latencies for
six paths in the system are noted.

The experiments for this system are concerned not just with meet-
ing end-to-end delay constraints, but with reducing the path laten-
cies as much as possible while meeting resource utilization bounds.
Utilization bounds are set at 70% for each of the 9 resources, and
deadlines for the six paths are set to their initial latencies.

First, we attempt to minimize average path latency on the six
paths by modifying the objective function. After 15 iterations, each
of which takes 1.25 seconds, the average path latency is reduced by
45%. The average utilization for the 8 ECUs is increased from 56%
to 61% while the bus utilization is reduced from 74% to 52%. Next,
we carry out six more experiments where we minimize each of the
individual path latencies separately. The latencies for each of the
six paths can be decreased an additional 17% to 63%, for a total
reduction ranging between 55% and 70% from the initial latencies.

These experiments demonstrate that it is possible to customize
the approach for a modified flow where the designer is interested in
minimizing specific path latencies. Even without modifying allo-
cations or priority assignments, period assignment alone is capable
of significantly affecting end-to-end latencies in the system.

5. CONCLUSIONS
The continuing proliferation of distributed automotive function-

ality and architectures complicates the mapping process for these

systems. This work provides an optimization procedure that au-
tomates the period assignment stage within mapping. First, by
leveraging schedulability analysis, we develop an MIGP formu-
lation that is applicable for systems with run-time priority-based
scheduling. Next, the MIGP formulation is approximated by a GP
formulation and the approximation error between the two formula-
tions is reduced with an iterative procedure. The approach has been
applied to two case studies and shown to be efficient, accurate, and
extensible. In the future, this work will be integrated with the ear-
lier mapping stages of the design flow shown in Figure 1 in order
to carry out joint allocation, priority assignment and period assign-
ment. We are also considering synthesizing hybrid data-driven and
periodic activation models [19] for such systems.

6. REFERENCES
[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L. Guernic,

and R. de Simone. The synchronous languages 12 years later.
Proceedings of the IEEE, 91, January 2003.

[2] R. Bosch. CAN specification, version 2.0. Stuttgart, 1991.
[3] S. Boyd, S. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on

geometric programming. Optimization and Engineering, 2006.
[4] S. Boyd and L. Vandenberghe. Convex optimization. Available at

http://www.stanford.edu/˜boyd/cvxbook/, 2004.
[5] Flexray. Protocol specification v2.1 rev. a. Available at

http://www.flexray.com, 2006.
[6] R. Gerber, S. Hong, and M. Saksena. Guaranteeing real-time

requirements with resource-based calibration of periodic processes.
IEEE Trans. on Software Engineering, 21(7):579–592, July 1995.

[7] M. G. Harbour, M. Klein, and J. Lehoczky. Timing analysis for
fixed-priority scheduling of hard real-time systems. IEEE
Transactions on Software Engineering, 20(1), January 1994.

[8] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. A. Vissers. A
methodology to design programmable embedded systems - the
Y-chart approach. volume 2268 of Lecture Notes in Computer
Science, pages 18–37. Springer, 2002.

[9] K. Koh, S. Kim, A. Mutapcic, and S. Boyd. gpposy: A matlab solver
for geometric programs in posynomial form. Technical report,
Stanford University, May 2006.

[10] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,
and R. Zainlinger. Distributed fault-tolerant real-time systems: The
MARS approach. IEEE Micro, 9(1):25–40, Feb. 1989.

[11] J. Löfberg. Yalmip : A toolbox for modeling and optimization in
MATLAB. In Proc. of the CACSD Conference, Taipei, 2004.

[12] M. Di Natale, P. Giusto, S. Kanajan, C. Pinello, and P. Popp.
Architecture exploration for time-critical and cost-sensitive
distributed systems. In Proceedings of the SAE Conference, 2007.

[13] OSEK. OS version 2.2.3 specification. Available at
http://www.osek-vdx.org, 2006.

[14] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of
mixed time/event-triggered distributed embedded systems. In 10th
International Symposium on Hardware/Software Codesign (CODES
2002), pages 187–192, Estes Park, Colorado, USA, May 6-8 2002.

[15] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity analysis in
real-time distributed systems. In Proceedings of the 11th Real Time
and Embedded Technology and Applications Symposium, pages
160–169, San Francisco (CA), U.S.A., Mar. 2005.

[16] M. Saksena and S. Hong. Resource conscious design of distributed
real-time systems – an end-to-end approach. In Proc. IEEE Int’l Conf
on Engineering of Complex Computer Systems, 1996.

[17] K. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time
tasks: An NP-hard problem made easy. Real-Time Systems,
4(2):145–165, 1992.

[18] K. Tindell, A. Burns, and A. J. Wellings. Calculating controller area
network CAN message response times. Control Eng. Practice,
3(8):1163–1169, 1995.

[19] W. Zheng, M. Di Natale, C. Pinello, P. Giusto, and
A. Sangiovanni-Vincentelli. Synthesis of task and message activation
models in real-time distributed automotive systems. In Proc. of
Design Automation and Test, Europe, 2007.

283

http://www.stanford.edu/~boyd/cvxbook/

