Verification of Quantitative
Properties of Embedded
Systems:

Execution Time Analysis

Sanjit A. Seshia

UC Berkeley
EECS 249
Fall 2009

Source

Material in this lecture is drawn from the following
sources:

“The Worst-Case Execution Time Problem — Overview
of Methods and Survey of Tools”, R. Wilhelm et al., ACM
Transactions on Embedded Computing Systems, 2007.

Chapter 9 of “Computer Systems: A Programmer's
Perspective”, R. E. Bryant and D. R. O’Hallaron,
Prentice-Hall, 2002.

“Performance Analysis of Real-Time Embedded
Software,” Y-T. Li and S. Malik, Kluwer Academic Pub.,
1999.

“Game-Theoretic Timing Analysis”, S. A. Seshia and A.
Rakhlin, ICCAD 2008

Extended version is Technical Report EECS-2009-130

EECS 249, UC Berkeley: 2

Worst-Case Execution Time (WCET) of a Task

The longest time taken by a software task to execute
-> Function of input data and environment conditions

BCET = Best-Case Execution Time
(shortest time taken by the task to execute)

EECS 249, UC Berkeley: 3

Worst-Case Execution Time (WCET) & BCET

a worst-case performance
=
Sl | | wostcaseguarantee
o
S The actual WCET
= ' Minimal must be found or | Maximal
3| |Lower upper bounded Upper
21 limi observed observed . T
= iming| BCET i f WCET]timing
% | lbound execution execution hound
T time _ time
L II | lll“" III | T LT [>
0 <«——— measured execution times —— UL
- possible execution times >
n timing predictability >

Figure from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.

EECS 249, UC Berkeley: 4

The WCET Problem

Given

o the code for a software task

o the platform (OS + hardware) that it will run on
Determine the WCET of the task.

Why is this problem important?

The WCET is central in the design of RT Systems:
Needed for Correctness (does the task finish in time?) and
Performance (find optimal schedule for tasks)

Can the WCET always be found?

In general, no, because the problem is undecidable.

EECS 249, UC Berkeley: 5

Typical WCET Problem Setting

Task executes within an infinite loop

while(1) { This code typically has:
read_sensors(); o loops with finite bounds
| compute(); [+ © no recursion
write_to_actuators(); | additional assumptions:
} o runs uninterrupted
o single-threaded

EECS 249, UC Berkeley: 6

Outline of the Lecture

o How to measure execution time

o Current Approaches to Execution Time Analysis
o Limitations

o The GameTime approach

o Demo of some tools

EECS 249, UC Berkeley: 7

How to Measure Run-Time

Several techniques, with varying accuracy:

o Instrument code to sample CPU cycle counter

relatively easy to do, read processor documentation for
assembly instruction

o Use cycle-accurate simulator for processor
useful when hardware is not available/ready

o Use Logic Analyzer
non-intrusive measurement, more accurate

EECS 249, UC Berkeley: 8

Cycle Counters

Most modern systems have built in registers that are
incremented every clock cycle

Special assembly code instruction to access

On Intel 32-bit x86 machines:

64 bit counter
RDTSC instruction sets $edx to high order 32-bits, $eax
to low order 32-bits

Wrap-around time for 2 GHz machine
Low order 32-bits every 2.1 seconds
High order 64 bits every 293 years

[slide due to R. E. Bryant and D. R. O’Hallaron] EECS 249, UC Berkeley: 9

Measuring with Cycle Counter

|dea
Get current value of cycle counter
store as pair of unsigned’s cyc_hi and cyc_1lo
Compute something
Get new value of cycle counter
Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = O0;
static unsigned cyc_lo = 0;

void start_counter ()

{

/* Get current value of cycle counter */
access_counter (&cyc _hi, &cyc_1lo);

}

[slide due to R. E. Bryant and D. R. O’Hallaron] EECS 249, UC Berkeley: 10

Accessing the Cycle Counter

GCC allows inline assembly code with mechanism for
matching registers with program variables

Code only works on x86 machine compiling with GCC

void access_counter (unsigned *hi, unsigned *10)
{
/* Get cycle counter */
asm("rdtsc; movl %$%edx, %$0; movl %$%eax, %$1"
s N=pn (*hi), N=p" (*10)
: /* No input */
: "%$edx", "%Seax");

}

Emit assembly with rdt sc and two mov1 instructions

[slide due to R. E. Bryant and D. R. O’Hallaron] EECS 249, UC Berkeley: 11

Completing Measurement

Get new value of cycle counter

Perform double precision subtraction to get elapsed
cycles

Express as double to avoid overflow problems

double get_counter ()

{
unsigned ncyc_hi, ncyc_1lo
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter (&ncyc_hi, &ncyc_1lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

[slide due to R. E. Bryant and D. R. O’Hallaron] EECS 249, UC Berkeley: 12

Timing With Cycle Counter

Time Function P
First attempt: Simply count cycles for one execution of P

double tcycles;
start_ counter();

P();
tcycles = get_counter();

What can go wrong here?

[slide due to R. E. Bryant and D. R. O’Hallaron] EECS 249, UC Berkeley: 13

Measurement Pitfalls

o Instrumentation incurs small overhead

measure long enough code sequence to compensate
o Cache effects can skew measurements

“warm up” the cache before making measurement

o Multi-tasking effects: counter keeps going even when the
task of interest is inactive

take multiple measurements and pick “k best” (cluster)
o Multicores/hyperthreading

Need to ensure that task is ‘locked’ to a single core
o Power management effects

CPU speed might change, timer could get reset during
hibernation

EECS 249, UC Berkeley: 14

Outline of the Lecture

o How to measure execution time

o Current Approaches to Execution Time Analysis
o Limitations

o The GameTime approach

o Demo of some tools

EECS 249, UC Berkeley: 15

Components of Execution Time Analysis

o Program path (Control flow) analysis
Want to find longest path through the program
|dentify feasible paths through the program
Find loop bounds
|dentify dependencies amongst different code fragments

o Processor behavior analysis

For small code fragments (basic blocks), generate
bounds on run-times on the platform

Model details of architecture, including cache behavior,
pipeline stalls, branch prediction, etc.

> Outputs of both analyses feed into each other
EECS 249, UC Berkeley: 16

Program Path Analysis: Path Explosion

for (Outer = 0; Outer < MAXSIZE; Outer++) {
/* MAXSIZE = 100 */
for (Inner = 0; Inner < MAXSIZE; Inner++) {
if (Array[Outer] [Inner] >= 0) {
Ptotal += Array[Outer] [Inner];
Pcnt++;
} else {
Ntotal += Array[Outer] [Inner];
Ncnt++;
}
Postotal = Ptotal;
Poscnt = Pcnt,
Negtotal = Ntotal;
Negcnt = Ncnt;

}

Example cnt.c from WCET benchmarks, Malardalen Univ.
EECS 249, UC Berkeley: 17

Program Path Analysis: Overall Approach

o Construct Control-Flow Graph (CFG) for the task
Nodes represent Basic Blocks of the task
Edges represent flow of control (jumps, branches, calls,

)
o The problem is to identify the longest path in the CFG

Note: CFG can have loops, so need to infer loop bounds
and unroll them

This gives us a directed acyclic graph (DAG). How do
we find the longest path in this DAG?

EECS 249, UC Berkeley: 18

Example l d1
B1:
o= 107 N =10; | x1
1= q=0;
while (g < N)
q++; Id2
q = r;
B2: d4
| | -~ X2 | while(a<N)
Xi - # times Bi is executed 45 43
dj = # times edge is executed _/
4 B4: B3: | x3
q=r; g-++,
| d

Example due to Y.T. Li and S. Malik
EECS 249, UC Berkeley: 19

Program Path Analysis: Dependencies

#define CLIMB MAX 1.0

void altitude_pid run(void) {

float err = estimator z - desired altitude;
desired climb = pre_climb + altitude_pgain * err;
i1f (desired climb < -CLIMB MAX)
desired climb
i1f (desired climb >
desired_climb

Only one of these statements is executed

Example from “PapaBench” UAV autopilot code, IRIT, France
EECS 249, UC Berkeley: 20

Example, Revisited l d1

xi > # times Bi is executed B1:
dj > # times edge is executed N=10;| x1
C, > measured time taken by Bi q=0;
Want to Id2
maximize 2 G, xi d4
subject to constraints 0 B2:
_di = hile(q<N)
x1 =d1 =d2 W
x2 = d2+d4 = d3+d5 d5_~ d3
x3=d3=d4 =10
: B3:
q="r, Q++,
[6

Example due to Y.T. Li and S. Malik
EECS 249, UC Berkeley: 21

Timing Analysis and Compositionality

Consider a task T with two parts A and B composed in
sequence: T=A;B

ls WCET(T) = WCET(A) + WCET(B) ?

NO!
WCETs cannot simply be composed ®
- Due to dependencies “through environment”

EECS 249, UC Berkeley: 22

Timing Anomalies

Branch evaluated
|-Cache Hit (A X pre-fetch XB (I$ miss due to pre-fetchD IA

/N

-Cache Miss (A (missinis))J(B) ¢

Scenario 1: Instr A hits in |-cache, triggers branch
speculation, and prefetch of instructions, then predicted
branch is wrong, so Instr B must execute, but it's been
evicted from |I-cache, execution of B delayed.

Scenario 2: Instr A misses in I-cache, no branch prediction,
then B hits in I-cache, B completes.

[from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.]
EECS 249, UC Berkeley: 23

Outline of the Lecture

o How to measure execution time

o Current Approaches to Execution Time Analysis
o Limitations

o The GameTime approach

o Demo of some tools

EECS 249, UC Berkeley: 24

Current WCET Methods: Limitations

s Big Limitation: Environment (Platform) Modeling

— Where’s my platform? Tools only work for selected
processors/compilers for which detailed models are
hand-constructed

— Inaccurate & Tedious: platforms are becoming more
complex, modeling takes months of human effort

— Brittle, not portable: small changes to the platform
can require completely re-doing the analysis
— See e.g., [E. A. Lee, TR'07], [Kirner and Puschner, ISORC 2008]

Beyond WCET:
Other Execution Time Problems

m Average-case analysis
— Given any program path (input), can we predict
how long the program will take to execute, on
average?
m Profile
— Plot histogram of execution times of a program

— Find top 10% of longest program paths

Two Dimensions of the
WCET Estimation Problem

/Challenqe: Path A Worst-case program path

Exponentially-many
program paths

&n worst case)

Worsticase env. state

| |

Challenge:
How to find the worst-case state of the platform (environment)?
* Need accurate model of platform

* Need to find worst-case state
\ ,/27 -

Classification of Current Tools

Static Analysis Measurement-Based

s Abstract in_terpr_etatiotn Run tests
generates invariants to T :
— Test suite generated
GElpilre randomly or

— worst-case environment heuristically, e.g., using
states at control points genetic algorithms

or
— loop bounds via systematic methods

Find time bounds on such as model checking

basic blocks (straight-line Measure execution time

program fragments) from]
worst-case state Compute maximum over all

Use implicit path observed times

enumeration (IPET) based Under certain conditions,
on integer programming this could be done

to compute WCET compositionally, but in
general need end-to-end

A very effective approach measurements
if an accurate platform
model is available

Some WCET Estimation Tools

Flow Proc. Behavior Bound Calec.

value analysis static program analysis IPET

linear loop-bounds | static program analysis IPET per func-
and constraints by tion

Omega test
RapiTime n.a. measurement structure-based
SymTA /P single feasible path | static program analysis for | IPET

analysis I/D cache, measurement for
segments

Heptane static prog. analysis structure-based,
IPET

Vienna S. - static program analysis IPET

Vienna M. | Genetic Algorithms segment measurements n.a.

Vienna H. Model Checking segment measurements IPET

SWEET value analysis, ab- | static program analysis for | path-based,
stract execution, | instr. caches, simulation for | IPET-based,
syntactical analysis the pipeline clustered
Florida static program analysis path-based
Chalmers modified simulation
Chronos static prog. analysis IPET

[R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.]

Issues with Static Methods:
Platform Modeling

Problems:

e Time-consuming: several
Program months to model a processor
e Inaccurate: may not model
all of the platform

V

Network OS / cwner programs

Platform

Sensors/ PROCESSOR
Actuators MODEL

Issues with Measurement-Based Tools

= How good is the test suite?
— Good path coverage?

s Does the worst-case platform behavior occur?

= Is the measurement accurate?

Outline of the Lecture

How to measure execution time

Current Approaches to Execution Time Analysis
Limitations

The GameTime approach (quick overview)
Demo of some tools

The GameTime Approach: Contributions
[Seshia & Rakhlin, ICCAD ’08]

s Model the estimation problem as a Game
— Tool vs. Platform
— Robust to changes in the platform

Measurement-based
— Perform end-to-end measurements of execution time

of selected (linearly many) paths on target platform

Learn Environment Model
— Learn a (graph) model of platform’s behavior

Online algorithm: GameTime

— Theoretical guarantee: can find WCET with arbitrarily
high probability under some assumptions

Leverages advances in “Verification Engines”
— Satisfiability modulo theories (SMT) solvers

Intuition for Our Approach

Controlled by “us”

(the estimation tool
Worsticase env. state

Game:
Tool
VS.
Platform

Controlled by the environment
(platform)

Components of the Game

m Strategies (moves) of the Tool
m Strategies (moves) of the Platform (environment)

x Winning condition of the Game

Program Model: Unrolled CFG

Model the program by

its Control-Flow Graph

(CFG)

 Unroll loops and
recursive function
calls, inline functions
to get a Directed
Acyclic Graph (DAG)

» Each source-sink
path is a program
execution that the
tool can generate a
test case for

flag=1l; *x++; flag=1l; *x++;

CFG for program
containing loop
with bound = 1

4
o

CFG unrolled
to a DAG

Tool Strategies = Paths

void altitude control task (void) {

FunctionCallfy

—> if (pprz_mode == PPRZ MODE AUTO2
| | pprz mode == PPRZ MODE HOME) {
—>if (vertical mode == VERTICAL MODE AUTO ALT) ({
/* inlined below: function altitude pid run(); =*/

float err = estimator z - desired altitude;
desired climb = pre climb + altitude pgain * err;
if (desired climb < -CLIMB MAX)
desired climb = -CLIMB MAX;
> if (desired climb > CLIMB_MAX)
} desired climb = CLIMB MAX;
H

(e = eimator_2 - desived_alimde;
deszired_climb = pre_climb + altitude_pgain # er;)

R Tool strategy:
Paths in the control flow graph

(ppre_moxde 1= 3y

veltical_inode 1= 3)

Tool selects:

Inputs that drive the program
down the chosen path

A Path is a Vector x € {0,1}™

(m = #edges)

xl =(1,1,1,0,0,1,1,0,0,1)

x2=(1,0,0,1,1,0,0,1,1,1)
x3=(1,1,1,0,0,0,0,1,1,1)

x4 =(1,0,0,1,1,1,1,0,0,1)

Insight:
Only need to sample

a Basis
of the space of paths

Platform Model

Models path-independent timing

Weights on edges of unrolled CFG

/’

&
Path-specific perturbation

Models path-dependent timing

What we want to model:

 Impact of the platform on
program execution time

 Lengths of all program paths

Platform’s Strategies

Weights on edges of unrolled CFG w e Rm™
&

Path-specific perturbation T € Rm

The Game & Winning Condition

Played over several roundst=1,2, 3, ..., 7

At each round t:

Tool Platform
picks x, picks w,

Platform picks r,

p4 ('15'15'15'1)

Tool observes [, = x, - (W, + T,) (5+47+1+11) -4 =20

At round 7 : Tool predicts longest path x*_
m Tool wins if its prediction is correct

Summary of Experimental Results

s GameTime is Efficient
— 7 x 107 total paths, vs. 183 basis paths

Sampling basis paths tells us about longer paths
we do not sample

— Found paths 25% longer than sampled basis

GameTime can accurately estimate the timing
profile with few measurements

GameTime does better than Random Testing
— Found estimates twice as large

GameTime can even find larger WCET estimates
than conservative WCET estimation tools

Open Problems

o Architectures are getting much more complex.
Can we create processor behavior models without the
“agonizing pain”?
Can we change the architecture to make timing analysis

easier? [See PRET machine project by Prof. Lee and
colleagues]

o Analysis methods are “Brittle” — small changes to code
and/or architecture can require completely re-doing the
WCET computation

Use robust techniques like GameTime that learn about
processor/platform behavior

Need to deal with concurrency, e.g., interrupts

o Need more reliable ways to measure execution time
EECS 249, UC Berkeley: 43

