The Synchronous
Model of Computation

Stavros Tripakis
UC Berkeley

EE 249 Lecture — Sep 15, 2009

Fundamental characteristics of the
synchronous MoC

Notion of synchronous round (or cycle)
Concurrency

Determinism (most of the time)

— Same (sequence of) inputs => same (sequence of)
outputs

Contrast this to:

— Concurrency with threads:
* Non-deterministic: results depend on interleaving

— Concurrency in Kahn Process Networks:
e Asynchronous (interleaving), but still deterministic
* Needs unbounded buffers in general, for communication

The synchronous round

" inputs " inputs
: l l rounds
! outputs outputs

round 1 round 2

Example: synchronous block diagram

» B P
— A

ABC | ACGB

rounds

Example: synchronous block diagram
j » B P
— A

deterministic concurrency

oy
oy

0
0

rounds

Example: FIR filter

x[n] Z”

>) —y[n]

y(n) = %x(n)+%x(n—l)+%x(n -2)

Where is the synchronous round here?

Example: sequential logic diagram

count Ca ! O Os
enable
count
up 1 doun L[
= up pere
0= dou'%z -
HJ Q) SN, —J Q) —J Q)

Clock > I 1 I
1 K @“I —1— I @~| _LA' @ _I _1_1_ @ B
L L)][]

AN N N NS A N

i

Where is the synchronous round here?

Example: control loop

initiallze state;
while (true) do
read i1nputs;
compute outputs;
update state;
write outputs;
end while;

Where is the synchronous round here?

Example: control loop (v2)

initialize state;
while (true) do
awalt clock tick;
read 1nputs;
compute outputs;
update state;
write outputs;
end while;

Is this an important model of
computation?

* Yes!
— Extremely widespread, both in terms of models/
languages, and in terms of applications
* Examples of applications:
— Synchronous digital circuits

—99% (?) of control software
* Read-compute-write control loops
* Nuclear, avionics, automotive, ...

— Multimedia, ...

Is this an important model of
computation?

c.f. Simulink to FPGA,
SW ++ or to HDL

! = Modeling Endine Timina UsinaTriagered Subsystems
3 i - crank speed
X5 2 ’ . wvalve timing (radisec)
- £
Throttl(eda:g;;elz:;roﬁies masstk) Teng _ - Engine
rigger N #3040
= W Tload
oo Throttle & Manifold 5 . Combustion rais Engine
- ompression 2 to rpm Speed
Vehicle {rpm)
Load Dynamics
Drag Torcue
] Throttie D
|
throttle deg {purple)
load torgue Nm {yellow)
Convriaht 1990-2005 The Math'Works Inc.
' Engi trol model in Simulink

Copyright The Mathworks

11

Is this an important model of
computation?

* Yes!

— Extremely widespread, both in terms of models/
languages, and in terms of applications

 Examples of models and languages:
— Mealy/Moore machines
— Verilog, VHDL, ...
— (discrete-time) Simulink
— Synchronous languages
— (Synchronous) Statecharts
— The synchronous-reactive (SR) domain in Ptolemy Il

Myths about synchronous models

* Synchronous models have zero-time semantics

— Synchronous semantics are essentially untimed: they do
not have a quantitative notion of time.

— Famous Esterel statements [Berry-Gonthier ‘92]:
* every 1000 MILLISEC do emit SEC end
* every 1000 MILLIMETER do emit METER end

— Synchronous models can capture both time-triggered
and event-triggered systems. E.g.:
* Do something every 20ms

* Do something whenever you receive an interrupt from the
engine

Example: control loop (v3)

initialize state;
while (true) do
awalt clock tick
or any other interrupt;
read 1nputs;
compute outputs;
update state;
write outputs;
end while;

Myths about synchronous models

But:

— The synchronous cycles
could be interpreted as
discrete time: 0, 1, 2, 3, ...,
in which case we have a
discrete-time semantics...

— ... and this can also be seen
as an abstraction of real-
time:

— C.f. timing analysis of
digital circuits

— C.f. WCET analysis of
synchronous control loops

=0 t=1 t=2 t=3 t=4 t=H

k!] L] LJ LJ LJ Lo

e addr [L
inst_addr (X} addr Y XXX)
link_addrs { XXX X map X XXX)
link load { XXX X vam X XXX)
link_load_r { XXX ¥ val X XXX)
simulate | I
output { XXX (X X XXX)
prev_output { XXX X old X XXX)
differs T e—
differs.r | | —
dep-addr { XXX X dep X X))
req { XXX X req X X))

Myths about synchronous models

* Synchronous models are non-implementable
(because zero-time is impossible to achieve)

— Hein?

=3 Real-Time Workshop (0w s nax BN st 0 aE en sumeg
o {teock [e =] Toe ronet] et |

(aid

Fomal Yook Hep Bt _fueksys
LR e St P ok -
fuslatogfunction | FEE YBRE (D) [0l e HuDOs ROB e
1'= Fault-Tolerant Fuel Control System - Fixed Point
+

16

Benefits of synchronous models

Often more light-weight than asynchronous
— No interleaving => less state explosion

Often deterministic

— Easier to understand, easier to verify

SW implementations:

— No operating system required

— Static scheduling, no memory allocations, no dynamic
creation of processes, ...

Simple timing/schedulability analysis
— Often simple WCET analysis also: no loops

Asynchronous vs. Synchronous
Product

component automata asynchronous synchronous

product product

Lecture plan

e Part 1: Single-rate synchronous models
* Part 2: Multi-rate synchronous models

* Part 3: Feedback and Causality

Part 1: Single-rate synchronous models

Moore/Mealy machines

Synchronous block diagrams
— Inspired by discrete-time Simulink, and SCADE

Lustre
Esterel

Moore Machines

States: {q0, q1, g2, g3} deterministic
Initial state: g0

Input symbols: {x,y,z} 2 T N
Output symbols: {a,b,c}

Output function:
— QOut : States -> Outputs

Transition function:
— Next: States x Inputs -> States

Where is the synchronous round here?

Moore machine: a circuit view

x(n) —

t N B0

|

clock

s(n)

Mealy Machines

States: {SO, S1, S2} 1h 010
, 4 m 1/0 m

Initial state: SO ®/*\
In ;

put symbols: {0,1} -
Output symbols: {0,1} o
Output function: » /
— Qut : States x Inputs -> Outputs @

Transition function:
— Next: States x Inputs -> States

Where is the synchronous round here?

Mealy machine: a circuit view

x(n)

|

clock

s(n)

Is this a “purely synchronous” model?

Moore vs. Mealy machines

Oq O, O, Os

cour
enable
,ciounz‘
up 1 fe _oui;n L[G
0= d_ou'g -
J Q J @ HJ @ J @
“lo

Us o}, <3z Moore or Mealy?

1

1

K Q K §—|

Clock — ‘j:
:
\é\/ ‘\J’\J ‘\/H\/‘
x[n] z™! z!

Y ! Moore or Mealy?
=)

25

Moore vs. Mealy machines

* Every Moore machine is also a Mealy machine
— Why?

* |sit possible to transform a Mealy machine to
a Moore machine?

Synchronous block diagrams

Throttle

Transmission brake
Control Unit

* Physical models often described in
continuous-time

e Controller part (e.g., Transmission Control
Unit) is discrete-time

Synchronous block diagrams

File Edit Yiew Simulation Format Tools Help

Modeling an Automatic Transmission Controller
impeller torgue
—{1i
Me - 1 e :
Engine RPM n
—— W throtte »
—»
Double-click to Engine qear
open the GUI rout
and select a Mout output torgue
maneuver — In1 -
__™{in2 Transmission
] Brake ! ins out2 T
L Throte p— transmission speed
iftLogic
Driving Maneuvers
—down_th A gear [—— vehicle
speed
up_th throthle fe— Vehicle mph
= vehicle (yellow)
Threshold Calculation ey I & throttle %
L) . | I

Copyright 1990-2005 The MathWorks Inc.

Example: FIR filter

y(n) = %x(n)+%x(n—l)+%x(n -2)

Y1) = X1+ 5,(1) + .,
S (n+1)=x(n)

S,(n+1)=5,(n)

S,(0) = initial state

S,(0) = mitial state

What is the Mealy machine for this diagram?

Hierarchy in synchronous block
diagrams

Hierarchy in synchronous block
diagrams

Fundamental modularity concept

Semantics of hierarchical SBDs

* Can we define the semantics of a composite
SBD as a Mealy machine?

— In particular, with a pair of (Out, Next) functions?

Problem with “monolithic” semantics

False 1/0 dependencies
=>
Model not usable in some contexts

x1)\b A —> vyl P.out (x1, x2) returns (yl, y2)
{
N\ vyl = A.out(x1);
> y2 1= Boout(x2);
y2
X2 b—) B return (yl, vy2);
}

Solution

[DATE’08, RTAS’08, POPL'09]

Generalize from a single, to MANY output functions

P.outl

ret
=)

P.out?2
ret

}

(inl) returns outl {
urn A.out(inl);

(in2) returns out2 {
urn B.out (1in2);

Lustre

e The FIR filter in Lustre:

node fir (x real) returns
var

sl, s2 : real;
let

sl = 0 -> pre x;

s2 = 0 -> pre sl;

y = x/3 + s1/3 + s2/3;
tel

(y

real) ;

x[n]

<
N

O—]

Lustre

e The FIR filter in Lustre:

node fir (x real) returns
var

sl, s2 : real;
let

sl = 0 -> pre x;

s2 = 0 -> pre sl;

y = x/3 + s1/3 + s2/3;
tel

(y

real) ;

x[n]

<
N

w|—

w|—

Lustre

e The FIR filter in Lustre:

node fir (x : real) returns (y : real);
var
sl, s2 : real;
let
y = x/3 + s1/3 + s2/3;
s2 = 0 -> pre sl;
sl = 0 -> pre x;
tel

What has changed? Is this correct?

Lustre

* The FIR filter in Lustre (no explicit state vars):

node fir (x : real) returns (y : real);
let
y = x/3
+ (0 -> pre x)/3
+ (0 -> (0 -> pre pre x))/3;
tel

x[n] z™! z7!

v

O—
M W[+
=

Esterel

The FIR filter in Esterel:

module FIR:
input x : double;
output y : double;

var sl := 0 : double, s2 := 0 : double in
loop
await x ;
emit y(x/3 + s1/3 + s2/3) ;
s2 := sl ;
sl := x ;
end loop

end var.

Esterel

e The FIR filter in Esterel:

module FIR:
input x : double;
output y : double;

var sl := 0 : double, s2 := 0
loop
await x ;
emit y(x/3 + s1/3 + s2/3) ;
sl := x ;
s2 := sl ;
end loop
end var.

: double in

What has changed? Is this correct?

Esterel

* A speedometer in Esterel:

module SPEEDOMETER:

input sec, cm; % pure signals
output speed : double; % valued signal
loop
var cpt := 0 : double in
abort
loop
await cm ;
cpt := cpt + 1.0
end loop

when sec do
emit speed(cpt)
end abort
end var
end loop.

Lustre

* The speedometer in Lustre:

node speedometer (sec, cm: bool) returns (speed: real);
var

cptl, cpt2 : int;

spl, sp2 : real;

let
cptl = counter(cm, sec);
spl = if sec then real(cptl) else 0.0;
cpt2 = counter (sec, cm);
sp2 = if (cm and (cpt2 > 0))
then 1.0/ (real (cpt2))
else 0.0;
speed = max(spl, sp2);

tel

Part 2: Multi-rate synchronous models

* Synchronous block diagrams with triggers
— Inspired by discrete-time Simulink, and SCADE

e Lustre with when/current
 What about Esterel?

Triggered and timed synchronous block
diagrams

* Motivated by Simulink, SCADE

Triggered block Inline Parameters = on
/

a/ ' . 5
. ' > » D

ey ‘q_]

R) | ' L= Out1
y = . : Discrete-Time Ts=-1
. Integrator
R . I Te=1

= j

Simulink/Stateflow diagram Sample time

Triggered synchronous block diagrams

TRIGGER

/

P
multi-rate /
models: A T,
B executed only when
trigger = true > » B P \C P
« All signals “present” always /
« But not all updated at the /
same time /
 E.g., output of B updated only —
when trigger is true TRIGGERED need I,mtlal
value in case
BLOCK

trigger = false
_ _ _ . at n = 0 (initial
Question: do triggers increase expressiveness? round)

Trigger elimination

» B P>
|init:v
> h »» D b>r—> ‘
—r A4 P » B r—>
I—’l init:v
-y C PP D PP Id P>

46

Trigger elimination: atomic blocks

t

t

Iinit:v
- .
=y oA Y

(a) eliminating the trigger from a combinational atomic block

t

iinit:v
N

ity

(b) eliminating the trigger from a unit-delay

“static”
multi-rate
models

Timed diagrams

“TIMED”
BLOCKS

/

—

A

(3,1)

—

/A

(2,0)

\\ //
(period, phase)
specifications

Timed diagrams =
statically triggered diagrams

(3,1)

(2,0)

where

produces:

(3,1)

(2,0)

—» A > B I C
(2,0)
A

true, false, true, false, ..

Multi-clock synchronous programs in
Lustre

* Then when and current operators:
node A(x: int, b: bool) returns (y: int);

let
y = current (x when b);

tel
x: 01 2 3 4 5
b: T F TFF T
X when b: O 2 5
v: 00 2 2 2 5

Multi-clock synchronous programs in
Lustre

node A(x1l,x2: int, b: bool) returns (y: int);
let

y = x1 + (x2 when b);
tel

What is the meaning of this program?

Forbidden in Lustre

Multi-clock synchronous programs in
Lustre

* |n Lustre, every signal has a clock = “temporal”
type
* The clock-calculus: a sort of type checking

— Only signals with same clock can be added,
multiplied, ...

— How to check whether two clocks (i.e., boolean
signals) are the same?

* Problem undecidable in general
* |In Lustre, check is syntactic

Multi-rate in Esterel

MILLISEC™?| every 1000 MILLISEC do
emit SEC —> SEC

end

||

every 1000 MILLIMETER do
emit METER

MILLIMETER | end —> METER

Part 3: Feedback and Causality

 Vanilla feedback:

— Cyclic dependencies “broken” by registers, delays, ...

* Unbroken cyclic dependencies:
— Lustre/SBD solution: forbidden

— Esterel/HW solution: forbidden unless if it makes
sense
e Malik’s example
* Constructive semantics

Feedback in Lustre

node counter () returns (c : int);

let OK
c =0-> (prec) + 1;

tel

node counter () returns (c : int);
let

c=0->c + 1;
tel

Rejected

Feedback in Synchronous Block
Diagrams

Rejected, unless A or B is Moore machine

e Same as Lustre:

What about this?

z = 1f ¢ then

F (G (x))] F
else
G(F(x)) ' —4

Cyclic combinational circuit.

Useful: equivalent acyclic circuit is almost 2x larger
[Malik’94]

57

Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:

—x = F(x)

 What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X Oor not x

Constructive semantics

* Reason in constructive logic instead of
classical logic

e “yornotx” notanaxiom

* Then we cannot prove x=1 from:

—X = X Oor not x

Constructive semantics

True False

* Fix-point analysis in a flat CPO:

— Start with “bottom” (undefined),
iterate until fix-point is reached:

e Guaranteed in finite number of
iterations, because no. signals and no.
values are both finite

— If solution contains no undefined
values, then circuit is constructive

* |n our example:
—X = X or not x |
— Bottom is the fix-point 1
— Circuit not constructive

Constructive semantics: theoretical
basis

* Kleene fixed point theorem:

—Llet Lbea CPOand f:L - L be a continuous (and
therefore monotone) function. Then f has a least
fixed point equal to sup { bot, f(bot), f(f(bot)), ... }

* In our flat CPO, continuous = monotone:
— Non-monotone: f(bot) > f(a), where a is not bot
— Not a realistic function

* |n out flat CPO, termination is guaranteed.

Constructive semantics

o . a
Another example: _O_)__ffz_

—X = a and not y

—y = b and not x ?J__CO—b
* Here we have external inputs, |

must try for all possible input
combinations

e Exercise!

Summary

* Synchronous model of computation:
— Widespread, many languages, many applications

— Easier to understand, easier to verify (than
asynchronous interleaving)

— Interesting semantically

e To go further:

— Interesting implementation problems: how to
preserve the properties that the synchronous
abstraction provides (determinism, values, ...) during
implementation?

Questions?

References

State machines (Moore, Mealy, ...):
— Switching and Finite Automata Theory. Zvi Kohavi, McGraw-Hill, 1978.
Synchronous block diagrams:

— Lublinerman and Tripakis papers on modular code generation: available from
http://www-verimag.imag.fr/~tripakis/publis.html

Synchronous languages:

— “The synchronous languages 12 years later”, Proc. IEEE, Jan 2003, and
references therein.

Constructive semantics:
— Sharad Malik. Analysis of cyclic combinational circuits. ICCAD 1993.

— Gerard Berry. The Constructive Semantics of Pure Esterel. Draft book, 1996,
downloadable, google it.

General, overview:

— P. Caspi, P. Raymond and S. Tripakis. Synchronous Programming. In |. Lee, J.
Leung, and S. Son, editors, Handbook of Real-Time and Embedded Systems.
Chapman & Hall, 2007. Available from site above.

