
EECS 249 Guest Lecture

Berkeley, CA
September 8, 2009

Ptutorial: Using and Extending
Ptolemy II

Edward A. Lee
Robert S. Pepper Distinguished Professor and

Chair of EECS, UC Berkeley

Lee, Berkeley 2

References

  Ptolemy project home page:
http://ptolemy.eecs.berkeley.edu/

  Tutorial: Building Ptolemy II Models Graphically:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-129.html

  Latest release:
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest/

  Latest version in the SVN repository:
http://chess.eecs.berkeley.edu/ptexternal/

Lee, Berkeley 3

Outline

  Simple model building
  Writing actors
  Writing directors

Lee, Berkeley 4

Building Models

Lee, Berkeley 5

Outline

  Simple model building
  Writing actors
  Writing directors

Lee, Berkeley 6

Simple String Manipulation Actor

public class Ptolemnizer extends TypedAtomicActor {
 public Ptolemnizer(CompositeEntity container, String name)
 throws IllegalActionException, NameDuplicationException {
 super(container, name);
 input = new TypedIOPort(this, "input");
 input.setTypeEquals(BaseType.STRING);
 input.setInput(true);
 output = new TypedIOPort(this, "output");
 output.setTypeEquals(BaseType.STRING);
 output.setOutput(true);
 }
 public TypedIOPort input;
 public TypedIOPort output;
 public void fire() throws IllegalActionException {
 if (input.hasToken(0)) {
 Token token = input.get(0);
 String result = ((StringToken)token).stringValue();
 result = result.replaceAll("t", "pt");
 output.send(0, new StringToken(result));
 }
 }
}

Lee, Berkeley 7

Object Model for
Executable Components

Lee, Berkeley 8

Outline

  Simple model building
  Writing actors
  Writing directors

Lee, Berkeley 9

Object Model (Simplified) for
Communication Infrastructure

Lee, Berkeley 10

Object-Oriented Approach to Achieving
Behavioral Polymorphism

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

Recall: Behavioral polymorphism
is the idea that components can be
defined to operate with multiple
models of computation and multiple
middleware frameworks.

Lee, Berkeley 11

Extension Exercise

Build a director that subclasses PNDirector to allow ports to alter the
“blocking read” behavior. In particular, if a port has a parameter
named “tellTheTruth” then the receivers that your director creates
should “tell the truth” when hasToken() is called. That is, instead of
always returning true, they should return true only if there is a token
in the receiver.

Parameterizing the behavior of a receiver is a simple form of
communication refinement, a key principle in, for example,
Metropolis.

Lee, Berkeley 12

Implementation of the
NondogmaticPNDirector

package doc.tutorial;
import …
public class NondogmaticPNDirector extends PNDirector {
 public NondogmaticPNDirector(CompositeEntity container, String name)
 throws IllegalActionException, NameDuplicationException {
 super(container, name);
 }
 public Receiver newReceiver() {
 return new FlexibleReceiver();
 }
 public class FlexibleReceiver extends PNQueueReceiver {
 public boolean hasToken() {
 IOPort port = getContainer();
 Attribute attribute = port.getAttribute("tellTheTruth");
 if (attribute == null) {
 return super.hasToken();
 }
 // Tell the truth...
 return _queue.size() > 0;
 }
 }
}

Lee, Berkeley 13

Using It

With NondogmaticPNDirector:

With PNDirector:

Lee, Berkeley 14

Extension Exercise 2

Build a director that subclasses Director and allows different
receiver classes to be used on different connections. This is a form
of what we call “amorphous heterogeneity.”

Lee, Berkeley 15

Implementation of the
AmorphousDirector

package doc.tutorial;
import …
public class AmorphousDirector extends Director {
 public AmorphousDirector(CompositeEntity container, String name)
 throws IllegalActionException, NameDuplicationException {
 super(container, name);
 }
 public Receiver newReceiver() {
 return new DelegatingReceiver();
 }
 public class DelegatingReceiver extends AbstractReceiver {
 private Receiver _receiver;
 public DelegatingReceiver() {
 super();
 _receiver = new SDFReceiver();
 }
 public DelegatingReceiver(IOPort container) throws IllegalActionException {
 super(container);
 _receiver = new SDFReceiver(container);
 }

 public void clear() throws IllegalActionException {
 IOPort container = getContainer();
 if (container != null) {
 StringParameter receiverClass = (StringParameter)
 container.getAttribute("receiverClass", StringParameter.class);
 if (receiverClass != null) {
 String className = ((StringToken)receiverClass.getToken()).stringValue();
 try {
 Class desiredClass = Class.forName(className);
 _receiver = (Receiver)desiredClass.newInstance();
 } catch (Exception e) {
 throw new IllegalActionException(container, e,
 "Invalid class for receiver: " + className);
 }
 }
 }
 _receiver.clear();
 }

 public Token get() throws NoTokenException {
 return _receiver.get();
 }
 …

Lee, Berkeley 16

Using It

Lee, Berkeley 17

Extension Exercise 3

Build a director that fires actors in left-to-right order, as they are laid
out on the screen.

Lee, Berkeley 18

Implementation of the
LeftRightDirector

package doc.tutorial;
import java.util.Comparator;
import …
public class LeftRightDirector extends StaticSchedulingDirector {
 public LeftRightDirector(CompositeEntity container, String name) … {
 super(container, name);
 setScheduler(new LeftRightScheduler(this, "LeftRightScheduler"));
 }
 public class LeftRightScheduler extends Scheduler {
 public LeftRightScheduler(LeftRightDirector director, String name) … {
 super(director, name);
 }
 protected Schedule _getSchedule() … {
 StaticSchedulingDirector director = (StaticSchedulingDirector) getContainer();
 CompositeActor compositeActor = (CompositeActor) (director.getContainer());
 List actors = compositeActor.deepEntityList();
 Iterator actorIterator = actors.iterator();
 TreeSet sortedActors = new TreeSet(new LeftRightComparator());
 while (actorIterator.hasNext()) {
 Actor actor = (Actor) actorIterator.next();
 sortedActors.add(actor);
 }
 Schedule schedule = new Schedule();
 Iterator sortedActorsIterator = sortedActors.iterator();
 while (sortedActorsIterator.hasNext()) {
 Actor actor = (Actor) sortedActorsIterator.next();
 Firing firing = new Firing();
 firing.setActor(actor);
 schedule.add(firing);
 }

 return schedule;
 }
 public class LeftRightComparator implements Comparator {

 public int compare(Object o1, Object o2) {
 ...
 }
 public boolean equals(Object o) {
 …
 }
 }
 }
}

Lee, Berkeley 19

Ptolemy II Extension Points

  Define actors
  Interface to foreign tools (e.g. Python, MATLAB)
  Interface to verification tools (e.g. Chic)
  Define actor definition languages
  Define directors (and models of computation)
  Define visual editors
  Define textual syntaxes and editors
  Packaged, branded configurations

  All of our “domains” are extensions built on a core infrastructure.

Lee, Berkeley 20

Example Extensions
Python Actors, Cal Actors, MATLAB Actors

 Cal is an experimental language
for defining actors that is analyzable
for key behavioral properties.

Lee, Berkeley 21

Ptolemy II Extension Points

  Define actors
  Interface to foreign tools (e.g. Python, MATLAB)
  Interface to verification tools (e.g. Chic)
  Define actor definition languages
  Define directors (and models of computation)
  Define visual editors
  Define textual syntaxes and editors
  Packaged, branded configurations

  All of our “domains” are extensions built on a core infrastructure.

Lee, Berkeley 22

Example Extensions
Using Models to Control Models

 This is an example of a “higher-
order component,” or an actor that
references one or more other actors.

Lee, Berkeley 23

Examples of Extensions
Mobile Models

Model-based distributed task management:

MobileModel actor accepts a StringToken
containing an XML description of a model.
It then executes that model on a stream of
input data.

PushConsumer actor receives pushed
data provided via CORBA, where the data
is an XML model of a signal analysis
algorithm.

Authors:
Yang Zhao
Steve Neuendorffer
Xiaojun Liu

Lee, Berkeley 24

Ptolemy II Extension Points

  Define actors
  Interface to foreign tools (e.g. Python, MATLAB)
  Interface to verification tools (e.g. Chic)
  Define actor definition languages
  Define directors (and models of computation)
  Define visual editors
  Define textual syntaxes and editors
  Packaged, branded configurations

 All of our “domains” are extensions built on a core infrastructure.

Lee, Berkeley 25

Extension of Discrete-Event
Modeling for Wireless Sensor Nets

VisualSense extends
the Ptolemy II discrete-
event domain with
communication between
actors representing
sensor nodes being
mediated by a channel,
which is another actor.

The example at the left
shows a grid of nodes
that relay messages
from an initiator (center)
via a channel that
models a low (but non-
zero) probability of long
range links being viable.

Lee, Berkeley 26

Viptos: Extension of VisualSense with
Programming of TinyOS nodes

Physical environment

Hardware
Software

Simulation
(with visualization of
routing tree)

Code generation:
Models to nesC. Viptos extends VisualSense

with programming of TinyOS
nodes in a wireless network.
See the Ph.D. thesis of
Elaine Cheong (Aug 2007).

Viptos demo:
Multihop routing (Surge)

Lee, Berkeley 27

Another Extension: HyVisual – Hybrid System
Modeling Tool Based on Ptolemy II

HyVisual was 
first released in 
January 2003. 

Lee, Berkeley 28

Another Extension:
Kepler: Aimed at Scientific Workflows

Key capabilities added by Kepler:
  Database interfaces
  Data and actor ontologies
  Web service wrappers
  Grid service wrappers
  Semantic types
  Provenance tracking
  Authentication framework

This example shows the use of data ontologies and
database wrappers.

Lee, Berkeley 29

CPES Fusion Simulation Workflow
  Fusion Simulation Codes: (a) GTC; (b) XGC with M3D

  e.g. (a) currently 4,800 (soon: 9,600) nodes Cray XT3; 9.6TB RAM; 1.5TB simulation data/run
  GOAL:

  automate remote simulation job submission
  continuous file movement to analysis cluster f

or dynamic visualization & simulation control
  … with runtime-configurable observables

Select
JobMgr

Submit
Simulation

Job

Submit
FileMover

Job

Execution Log
(=> Data Provenance)

Overall architect (& prototypical user): Scott Klasky (ORNL)
WF design & implementation: Norbert Podhorszki (UC Davis)

Kepler as an Interface to the Grid

Lee, Berkeley 30

Leverage: Kepler is a Team Effort

Resurgence

Griddles

SRB

LOOKING

SKIDL

Cipres NLADR Contributor names and
funding info are at the
Kepler website: http://
kepler-project.org

Other contributors:
 - Chesire (UK Text Mining Center)
 - DART (Great Barrier Reef, Australia)
 - National Digital Archives + UCSD-TV (US)
 - …

Lee, Berkeley 31

Getting More Information: Documentation

Volume 1:
User-Oriented

Volume 2:
Developer-Oriented

Volume 3:
Researcher-Oriented

Tutorial information: http://ptolemy/conferences/07/tutorial.htm

