
Applications of Petri Nets

Presenter: Chung-Wei Lin

2010.10.28

Outline

․Revisiting Petri Nets

․Application 1: Software Syntheses

 Theory and Algorithm

․Application 2: Biological Networks

 Comprehensive Introduction

․Application 3: Supply Chains

 Example and Experiment

․Summary

2

Definition of a Petri Net

․A 3-tuple (P,T,F)

 P: set of places

 T: set of transitions

 F: (P ×T) U (T ×P) → N, weighted flow relation

3

․How does it work?

 Each place holds some (≥ 0) tokens

 A transition is enabled if its input places contain at least the

required # of tokens

 The firing of an enabled transition results in

 Consumption of the tokens of its input places

 Production of the tokens of its output places

1 1 1 2

p1 p2 p3t2t1
enabled enabled

More about Petri Nets

․Marking

 A vector representing the number of tokens in all places

․Properties of Petri Nets

 Reachability (of a marking from another marking)

 Boundedness

 The numbers of tokens in all places are bounded

 Conservation

 The total number of tokens is constant

 Deadlock-freedom

 Always at least one transition can fire

 Liveness

 From any marking, any transition can fire sometime

 Schedulability

 The first paper will discuss this

4

T-Invariant and Finite Complete Cycle

․T-invariant is a vector s.t.

 The i-th component is the number of firing times of transition ti

 The marking is unchanged if firing them so many times

 However, it does not guarantee that a transition can be fired

 Deadlock

․Finite complete cycle is a sequence of transitions s.t.

 The marking is unchanged if firing the sequence

5

21 2 1

p1 p2t2t1 t3

One T-invariant: (4,2,1)

Some finite complete schedules:

<t1,t1,t1,t1,t2,t2,t3>

<t1,t1,t2,t1,t1,t2,t3>

Outline

․Revisiting Petri Nets

․Application 1: Software Syntheses

 Synthesis of Embedded Software Using Free Choice Petri Nets

․Application 2: Biological Networks

․Application 3: Supply Chains

․Summary

6

Static, Quasi-Static, and Dynamic Scheduling

․Scheduling problem

 Mapping a functional implementation to real resources

 Satisfying real-time constraints

 Using resources as efficiently as possible

․Static scheduling

 Specifications contain only data computations

 The schedule can be completely computed at compile time

․Quasi-static scheduling

 Specifications contain data-dependent controls, like if-then-else

or while-do loops

 The schedule leaves data-dependent decisions at run-time

․Dynamic scheduling

 Specifications contain real-time controls

7

Free Choice Petri Net

․Free Choice Petri Net (FCPN) is a Petri net such that

every arc from a place is

 A unique outgoing arc, or

 A unique incoming arc to a transition

8

․Two transitions are in equal conflict relation (ECR) if

their presets are non-empty and equal

FCPN Not FCPN

ECR Not ECR

exactly an

if-then-else

structure!

branches of

if-then-else

structure

Valid Schedule (Set)

․Let

 Σ = {σ1,σ2,…} be a finite set

 σi = <σi
1,σi

2,…> is a finite complete cycle containing all source

transitions

․Σ is a valid schedule (set) if

 For all (σi
j,tk) s.t.

 σi
j ≠ σi

h for all h < j

 σi
j ≠ tk and they are in equal conflict relation

 Exist σl s.t.

 σl
m = σi

m for all m ≤ j

 σl
m = tk if m = j

․In words, a valid schedule is

 A set of finite complete cycles

for every possible outcome of

a choice

9

…
σ2

σ1

σ1 in Σ iff σ2 in Σ

Quasi-Statically Schedulable

․Given

 A FCPN N

 An initial marking μ0

․(N,μ0) is quasi-statically schedulable if

 There exists a valid schedule

10

t1

t3 t5

t2 t4

t1

t3

t2

t4

Σ = { <t1,t2,t4>,<t1,t3,t5> }

Schedulable

Σ = { <t1,t1,t2,t3,t4> } ?

Σ = { <t1,t1,t2,t3,t4>,<t1,t1,t3,t2,t4> } ?

Non-schedulable

How to Find a Valid Schedule? Step 1

․T-allocation is a function that chooses exactly one

transition for every place

․T-reduction associated with a T-allocation is a set of

subnets generated from the image of the T-allocation

11

․Step 1: decompose a net into

conflict-free components

 Compute all T-reductions of the net

 Reduction algorithm

t1
t3 t5 t7

t6t4t2

t8 t9

A1={t1,t2,t4,t5,t6,t7,t8,t9} A2={t1,t3,t4,t5,t6,t7,t8,t9}

t1

t6t4t2

t8 t9

R1

t1
t3 t5 t7

t6

t8 t9

R2

t3 t5 t7

t1

t6t4t2

t8 t9

How to Find a Valid Schedule? Step 2

․A T-reduction is schedulable if

 It has a finite complete cycle that

 Contains at least one occurrence of every source transition of the

net

 (Definition 3.5)

․Step 2: check if every conflict-free component is

statically schedulable

 Apply the standard techniques for synchronous dataflow

networks

 Solve T-invariant equation

 Check deadlock by simulation

12

How to Find a Valid Schedule? Step 3

․Given a FCPN, there exists a valid schedule if and only if

every T-reduction is schedulable

 Note that: a valid schedule  quasi-schedulable

․Step 3: derive a valid schedule, if there exists one

 Compute the union of the finite complete cycles of all T-reduction

13

t1
t3 t5 t7

t6t4t2

t8 t9

t1

t6t4t2

t8 t9

t1
t3 t5 t7

t6

t8 t9

(1,1,0,1,0,1,0,0,0)

(0,0,0,0,0,1,0,1,1)

(1,0,1,0,1,0,1,0,0)

(0,0,0,0,0,1,0,1,1)

T-invariants

(why needs two?)

finite complete cycle <t1,t2,t4,t6,t8,t9,t6> <t1,t3,t5,t7,t8,t9,t6>

valid schedule { <t1,t2,t4,t6,t8,t9,t6>,<t1,t3,t5,t7,t8,t9,t6> }

Code Generation

․Derive an implementation directly from a valid schedule

14

valid schedule

{ <t1,t2,t1,t2,t4>,<t1,t3,t5,t5> }

t1

t3 t5

t2 t4
2

2
p1

p3

p2 while (true) {

t1;

if (p1) {

t2;

count (p2) ++;

if (count (p2) == 2) {

t4;

count (p2) ‒= 2;

}

else {

t3;

count (p3) += 2;

while (count (p3) >= 1) {

t5;

count (p3) ‒ ‒;

}

}

}

conflict

transition

1p22

2p31

Outline

․Revisiting Petri Nets

․Application 1: Software Syntheses

․Application 2: Biological Networks

 Petri Net Modeling of Biological Networks

․Application 3: Supply Chains

․Summary

15

Basic Modeling of Biological Reactions (1/2)

․Synthesis

16

․Decomposition

A

B

AB

A

B

AB

A

B

AB

A

B

AB

․Reversible reaction with stoichiometry

A

B

AB

2

A

B

AB
2

2

Basic Modeling of Biological Reactions (2/2)

․Catalyzed reaction

17

․Inhibited reaction

A

B

AB

E

A

B

AB

E

A

B

AB

E

A

B

AB

E

Extensions of Petri Nets

․Coloured Petri Net (CPN)

 Assign data values to the token

 Define constraints on the token values

․Stochastic Petri Net (SPN)

 Transitions have exponentially distributed time delays

․Hybrid Petri Net (HPN)

 Discrete and continuous places

 Marked tokens and concentration levels

 Discrete and continuous transitions

 Determined and distributed delays

․Functional Petri Net (FPN)

 Flow relations depend on the marking

․Hybrid Functional Petri Net (HFPN)

18

More Complicated Modeling

․Biochemical networks

 Enzymatic reaction chain: CPN

 Intrinsic noise due to low concentrations: SPN

 More general pathway: FPN, HFPN

․Genetic networks

 Response to genes rather than consumption and production

 Switch Control: logical approach, CPN

 Concentration dynamics: HPN, HFPN

․Signaling networks

 Response to signal rather than consumption and production

 Transition delay: timed PN, timed CPN, SPN

․Discussion

 Tradeoff between expressiveness and analyzability

 Spatial properties, hierarchical modeling, other modeling

formalisms
19

Outline

․Revisiting Petri Nets

․Application 1: Software Syntheses

․Application 2: Biological Networks

․Application 3: Supply Chains

 Performance Analysis and Design of Supply Chains: A Petri

Net Approach

․Summary

20

Supply Chain Networks (SCN)

21

raw material

vendors

OEM

inbound

logistics

in
te

rm
e

d
ia

te

in
v
e
n
to

ry

distribution

centers

outbound

logistics

retailers

finished goods

inventory

C
U

S
T

O
M

E
R

S

Configurations & Operational Models of SCN

․Configurations

 Serial structure

 Divergent structure: petroleum industry

 Convergent structure: automobiles and air crafts

 Network structure: computer industry

․Operational models

 Make-to-stock (MTS)

 Orders are satisfied from stocks of inventory of finished goods

which are kept at retail points

 Make-to-order (MTO)

 A confirmed order triggers the flow of the supply chain

 Assemble-to-order (ATO)

 Before decoupling point, intermediate goods are made-to-stock

 After decoupling point, goods are made-to-order

 Tradeoff between holding cost and delayed delivery’s cost

22

Performance Analysis – Modeling

․Generalized Stochastic Petri Net (GSPN)

 Random order request

 Random logistics/interface time

․MTS, MTO, and ATO may have different

structures & initial markings

23

S1

suppliers

OEM

inbound

logistics

S2

M

W1

W2interfaces
outbound

logistics
warehouses

Performance Analysis – Setting

․Cost function

 Holding cost for inventories: HI

 Cost of delayed delivery: HD

 Vary the ratio of HD and HI from 1.5 to 40.0

․Apply Stochastic Petri Net Package (SPNP)

․Compare between make-to-stock (MTS) and assemble-

to-order (ATO)

24

Performance Analysis – Experiment 1

․Change arrival rate of end products on (W2)

25

S1

S2

M

W1

W2

Arrival Rate

(W2)

Total Cost

HD / HI = 1.5 (Expensive Holding) HD / HI = 40 (Expensive Delay)

MTS ATO MTS ATO

0.8 22.421 19.815 26.001 257.437

1.0 21.237 18.610 25.818 237.559

1.2 20.012 17.714 25.961 224.228

1.4 18.774 17.016 26.339 214.675

MTS > ATO

reasonable

MTS < ATO

reasonable

U-shape

why?

Performance Analysis – Experiment 2

․Change targeted finished goods inventory (on M)

26

S1

S2

M

W1

W2

FGI (M)

Total Cost

MTS ATO

MTS ATO HD / HI = 1.5 HD / HI = 40 HD / HI = 1.5 HD / HI = 40

6 5 18.54 28.01 15.64 197.40

9 6 27.53 29.34 18.37 201.52

12 7 35.553 42.175 21.07 204.87

15 8 43.403 49.929 23.73 207.92

immune but

useless
holding costs play more

important roles

Performance Analysis – Experiment 3

․Change interface times (from S2 to M)

27

S1

S2

M

W1

W2

Interface

Rate

(S2 M)

Total Cost

HD / HI = 1.5 (Expensive Holding) HD / HI = 40 (Expensive Delay)

MTS ATO MTS ATO

4.0 22.566 15.542 24.934 197.185

5.0 22.651 15.640 24.981 197.360

6.0 22.709 15.705 25.038 197.502

8.0 22.780 15.785 25.109 197.659

holding costs increase because interface S1M is

not fast enough to work with interface S2M

Decoupling Point Location Problem – Modeling

․Integrated GSPN-queuing model

 Amendable for integrated queuing network

GSPN analysis and deriving aggregated

facility by solving the original product from

queuing network (PFQN)

28

W2

W1

W3

S1 DC

logistics

…S2

logisticsstage 2

supplier

stage 1

supplier

stage N

distribution

center
retail

outlets

interface interface

Decoupling Point Location Problem – Setting

․Cost function

 Holding cost (proportional to H1)

 H1: holding cost for the first stage supplier

 Increase as moving from the first stage supplier to the distribution

center (H1, 1.2H1, 1.22H1, 1.23H1, …)

 Lead time cost (proportional to H2)

 H2: average lead time cost per unit good per hour

․Consider 5 stage supply chain with the last stage being

the retail outlet

․Set the decoupling point at stages 1, 2, 3, and 4

․Solve the PFQNs

29

Decoupling Point Location Problem – Experiment

30

Decoupling

Point

Total Cost (Base Stock Policy)

Expensive Holding  Expensive Delay

H2 / H1 = 10 H2 / H1 = 30 H2 / H1 = 40 H2 / H1 = 50

1 3.596 5.940 8.285 10.630

2 5.215 6.963 8.712 10.461

3 8.967 10.237 11.508 12.779

4 12.071 12.429 12.788 13.147

Decoupling

Point

Total Cost (Reorder Point Policy)

Expensive Holding  Expensive Delay

H2 / H1 = 10 H2 / H1 = 30 H2 / H1 = 40 H2 / H1 = 50

1 3.427 5.853 8.280 10.706

2 4.234 6.060 7.886 9.711

3 5.686 6.974 8.262 9.550

4 8.055 8.414 8.772 9.131

As delay cost increases, the decoupling point is moving to right

Outline

․Revisiting Petri Nets

․Application 1: Software Syntheses

․Application 2: Biological Networks

․Application 3: Supply Chains

․Summary

31

Summary

․Perti Net and its extension provide a wide range of

applications

 Software synthesis

 Biological network

 Supply chain

32

