Applications of Petri Nets

Presenter: Chung-Wei Lin

2010.10.28

Outline

e Revisiting Petri Nets

e Application 1: Software Syntheses
— Theory and Algorithm

e Application 2: Biological Networks
— Comprehensive Introduction

e Application 3: Supply Chains
— Example and Experiment

e Summary

Definition of a Petri Net

e A 3-tuple (P,T,F)
— P:setof places
— T:setoftransitions
— F:(PxT)U(TxP)— N, weighted flow relation

1 2
enabled enabled
e How does it work?

— Each place holds some (= 0) tokens

— Atransition is enabled if its input places contain at least the
required # of tokens
— The firing of an enabled transition results in
» Consumption of the tokens of its input places
» Production of the tokens of its output places

More about Petri Nets

e Marking
— A vector representing the number of tokens in all places

e Properties of Petri Nets
— Reachability (of a marking from another marking)
— Boundedness
» The numbers of tokens in all places are bounded
— Conservation
» The total number of tokens is constant
— Deadlock-freedom
» Always at least one transition can fire
— Liveness
» From any marking, any transition can fire sometime

— Schedulability
= The first paper will discuss this

T-Invariant and Finite Complete Cycle

e T-invariant is a vector s.t.
— The i-th component is the number of firing times of transition t;
— The marking is unchanged if firing them so many times

— However, it does not guarantee that a transition can be fired
» Deadlock

e Finite complete cycle Is a sequence of transitions s.t.
— The marking is unchanged if firing the sequence

OO
L Py L P2 t3
One T-invariant: (4,2,1)

Some finite complete schedules:
<ty,13,13,13, 1,1, 1>
<ty,13,1,13, 1,1, 1>

Outline

¢ Revisiting Petri Nets

e Application 1: Software Syntheses
— Synthesis of Embedded Software Using Free Choice Petri Nets

e Application 2: Biological Networks
e Application 3: Supply Chains
® Summary

Static, Quasi-Static, and Dynamic Scheduling

e Scheduling problem
— Mapping a functional implementation to real resources
— Satisfying real-time constraints
— Using resources as efficiently as possible

e Static scheduling

— Specifications contain only data computations

— The schedule can be completely computed at compile time
¢ Quasi-static scheduling

— Specifications contain data-dependent controls, like if-then-else
or while-do loops

— The schedule leaves data-dependent decisions at run-time

e Dynamic scheduling
— Specifications contain real-time controls

exactly an
If-then-else
structure!

Free Choice Petri Net

e Free Choice Petri Net (FCPN) is a Petri net such that
every arc from a place Is
— A unique outgoing arc, or
— A unique incoming arc to a transition

o

FCPN

OO

Not FCPN

e Two transitions are in equal conflict relation (ECR) if
their presets are non-empty and equal

: ECR

branches of
if-then-else
structure

Ol

Not ECR

Valid Schedule (Set)

° | et
— 2 ={0,,0,,...} be a finite set
» 0, =<0,07,...>is a finite complete cycle containing all source
transitions

e > isavalid schedule (set) If
— For all (o}) s.t.
» gl#Z0"forall h <
= 0) #t,and they are in equal conflict relation
— Exist o, s.t.
» oM=gMforallm =<

= O =1 ifm=] o,
* In words, a valid scheduleis ——...—{
— A set of finite complete cycles oF:

for every possible outcome of oo _
a choice o,in2iffo,in 2

Quasi-Statically Schedulable

e Glven

A FCPN N
An initial marking p,

® (N,yp) Is quasi-statically schedulable if

— There exists a valid schedule

b

L

Mzgz

&

> = { <ty t,,t,> <t t;,t:>}

Schedulable

4

s

ROF

2 = {<tyt,tt5,t> } 7
2 = { <t,1;,0,,15,1,>,<t;,t;,15,0,,1,> } ?

Non-schedulable 0

How to Find a Valid Schedule? Step 1

e T-allocation Is a function that chooses exactly one
transition for every place

e T-reduction associated with a T-allocation is a set of
subnets generated from the image of the T-allocation
A={t)5, b, 17, B, o}

tg &

O
SO
O

G s

e Step 1: decompose a net into
conflict-free components
— Compute all T-reductions of the net

» Reduction algorithm

A2:{t1,t3,t4,t5,t6,t7,t8,t9}

t8 1:9
Mﬂ\‘@tfu
{5 ts t
R, !

How to Find a Valid Schedule? Step 2

e A T-reduction is schedulable if

— It has a finite complete cycle that

» Contains at least one occurrence of every source transition of the
net

— (Definition 3.5)

e Step 2: check if every conflict-free component is
statically schedulable

— Apply the standard techniques for synchronous dataflow
networks

» Solve T-invariant equation
» Check deadlock by simulation

12

How to Find a Valid Schedule? Step 3

e Given a FCPN, there exists a valid schedule if and only if
every T-reduction is schedulable
— Note that: a valid schedule - quasi-schedulable

e Step 3: derive a valid schedule, if there exists one
— Compute the union of the finite complete cycles of all T-reduction

1:8[:t9 t8 1:9
t, t, z‘(b \(ls
tlﬂ 3;‘{% ty
ts t- t, ts i t,
T-invariants (1,1,0,1,0,1,0,0,0) (1,0,1,0,1,0,1,0,0)
(why needs two?) (0,0,0,0,0,1,0,1,1) (0,0,0,0,0,1,0,1,1)
finite complete cycle <t;,b,t,,t 15, 1,t5> <t,,t3,t5,t,15,1,t5>

valid schedule

{ <t1’t2’t4’t6’t8’t91t6>1<t11t31t51t71t8,t9,t6> }

13

Code Generation

e Derive an implementation directly from a valid schedule

t D t
2 P,

O

L Py

L3 Ps3 5

while (true) {

count (p,) ++;
1>p,>2 —>if (count (p,) ==2){
t4;
count (p,) —= 2;

valid schedule
{ <ttt 6,1, <tyt5,t5,t5>

}

- » else{

ts;

count (p3) +=2;
2>p;>1 —» while (count (p;) >=1){

te;
_ count ——
conflict | (P:)
transition)
}

14

Outline

¢ Revisiting Petri Nets
e Application 1: Software Syntheses

e Application 2: Biological Networks
— Petri Net Modeling of Biological Networks

e Application 3: Supply Chains
® Summary

15

Basic Modeling of Biological Reactions (1/2)

e Synthesis
)
A A
— - oL
B B
e Decomposition
)
A A
— -
B B

e Reversible reaction with stoichiometry

Basic Modeling of Biological Reactions (2/2)

e Catalyzed reaction

=) - .

¢ |Inhibited reaction

)

A

=) .
B B

17

Extensions of Petri Nets

e Coloured Petri Net (CPN)

— Assign data values to the token
_ Define constraints on the token values

e Stochastic Petri Net (SPN)
— Transitions have exponentially distributed time delays

e Hybrid Petri Net (HPN)

— Discrete and continuous places
= Marked tokens and concentration levels

_ Discrete and continuous transitions
= Determined and distributed delays

e Functional Petri Net (FPN)
— Flow relations depend on the marking

e Hybrid Functional Petri Net (HFPN)

18

More Complicated Modeling

e Biochemical networks
— Enzymatic reaction chain: CPN
— Intrinsic noise due to low concentrations: SPN
— More general pathway: FPN, HFPN

e Genetic networks
— Response to genes rather than consumption and production
— Switch Control: logical approach, CPN
— Concentration dynamics: HPN, HFPN

¢ Signaling networks
— Response to signal rather than consumption and production
— Transition delay: timed PN, timed CPN, SPN

e Discussion

— Tradeoff between expressiveness and analyzability

— Spatial properties, hierarchical modeling, other modeling
formalisms

19

Outline

¢ Revisiting Petri Nets

e Application 1: Software Syntheses
e Application 2: Biological Networks
e Application 3: Supply Chains

— Performance Analysis and Design of Supply Chains: A Petri
Net Approach

e Summary

20

Supply Chain Networks (SCN)

raw material
vendors

% ; finished goods
inbound inventory |

. oo ’ @E <°§% e
@E /% -

distribution outbound retailers
OEM centers logistics

intermediate

SH3AINOLSND

21

Configurations & Operational Models of SCN

e Configurations

Serial structure

Divergent structure: petroleum industry
Convergent structure: automobiles and air crafts
Network structure: computer industry

e Operational models

Make-to-stock (MTS)

» Orders are satisfied from stocks of inventory of finished goods
which are kept at retail points

Make-to-order (MTO)
» A confirmed order triggers the flow of the supply chain
Assemble-to-order (ATO)
» Before decoupling point, intermediate goods are made-to-stock
» After decoupling point, goods are made-to-order
Tradeoff between holding cost and delayed delivery’s cost

22

Performance Analysis — Modeling

outbound
logistics

suppliers inbound warehouses

logistics

e Generalized Stochastic Petri Net (GSPN)

— Random order request
— Random logistics/interface time

e MTS, MTO, and ATO may have different
structures & initial markings

23

Performance Analysis — Setting

e Cost function
— Holding cost for inventories: H,
— Cost of delayed delivery: H,
— Vary the ratio of Hy and H, from 1.5 to 40.0

e Apply Stochastic Petri Net Package (SPNP)

e Compare between make-to-stock (MTS) and assemble-
to-order (ATO)

24

Performance Analysis — Experiment 1

e Change arrival rate of end products on (W,)

Total Cost
Arrival Rate Hy / H, = 1.5 (Expensive Holding) Hp / H, = 40 (Expensive Delay)
(W2) MTS ATO MTS ATO
0.8 22.421 19.815 (26.001 257.437
1.0 21.237 18.610 25.818 237.559
1.2 20.012 17.714 { 25.961 224.228
1.4 18.774 17.016 26.339 214.675
MTS > ATO U—sh\ape MTS < ATO
reasonable why? reasonable

25

A
1! (| ===

Performance Analysis — Experiment 2

e Change targeted finished goods inventory (on M)

Total Cost
FGI (M) MTS ATO
MTS | ATO | Hy/H,=1.5 | Hy/H,=40 | Hy/H, =15 | Hy/H, =40
6 5 ([18.54 28.01 ([15.64 197.40
9 6 27.53 29.34 18.37 201.52
12 7 | { 35.553 42175 | { 21.07 204.87
15 8 43.403 49.929 23.73 207.92
k holding costs play more k immune but
important roles useless 26

e Change interface times (from S, to M)

B
T
1! [s

Performance Analysis — Experiment 3

Interface Total Cost
Rate HD / H| =15 (Expensive Holding) HD / HI =40 (Expensive Delay)
(S, > M)
MTS ATO MTS ATO
4.0 (22.566 (15.542 (24.934 (197.185
5.0 22.651 15.640 24.981 197.360
6.0 22.709 { 15.705 { 25.038 197.502
8.0 22.780 15.785 25.109 197.659

\ \

\

\

holding costs increase because interface S1->M is
not fast enough to work with interface S2->M

Decoupling Point Location Problem — Modeling
___Interface ___Interface &
m] T i il E W2
stage 1 logistics stage 2 logistics stage N W,
supplier supplier distribution rﬁl
2 On center outlets
—= . *® Integrated GSPN-queuing model
(i Q\\{ﬁ\ — Amendable for integrated queuing network
‘*T ra \\\\\i GSPN analysis and deriving aggregated
%/ "" facility by solving the original product from
:»,,m()\\:;3%\\ /«“ m gueuing network (PFQN)
AN [/1\)901 TP w295 S P

Decoupling Point Location Problem — Setting

e Cost function

— Holding cost (proportional to H,)
»« H,: holding cost for the first stage supplier

» Increase as moving from the first stage supplier to the distribution
center (H,, 1.2H,, 1.22H,, 1.23H,, ...)

— Lead time cost (proportional to H,)
= H,: average lead time cost per unit good per hour

e Consider 5 stage supply chain with the last stage being
the retall outlet

e Set the decoupling point at stages 1, 2, 3, and 4
e Solve the PFQNSs

29

Decoupling Point Location Problem — Experiment

Total Cost (Base Stock Policy)

Deg;‘:r?t"ng Expensive Holding €-> Expensive Delay
H,/H,=10 | H,/H, =30 | H,/H,=40 | H,/H, =50
1 3.596 5.940 8.285 10.630
2 5.215 6.963 8.712 10.461
3 8.967 10.237 11.508 12.779
4 12.071 12.429 12.788 13.147
Total Cost (Reorder Point Policy)
De(;%‘frﬁ’t"ng Expensive Holding €= Expensive Delay
H,/H,=10 | H,/H,=30 | H,/H,=40 | H,/H, =50
1 3.427 5.853 8.280 10.706
2 4.234 6.060 7.886 9.711
3 5.686 6.974 8.262 9.550
4 8.055 8.414 8.772 9.131

As delay cost increases, the decoupling point is moving to right

30

Outline

¢ Revisiting Petri Nets

¢ Application 1: Software Syntheses
e Application 2: Biological Networks
e Application 3: Supply Chains

e Summary

31

Summary

e Perti Net and its extension provide a wide range of
applications
— Software synthesis
— Biological network
— Supply chain

32

