o
The STATEMATE

Semantics of Statecharts

Paper by David Harel and Amnon Naamad
Part 2 presented by Jon Kotker




:- {};-‘ '

Remember

Taken from http://www.deehathaway.com/whos-awesome




Recap: STATEMATE

+ Set of languages used to model
reactive systems

+ Statecharts provide semantics to
activities in activity charts




Recap: Terminology

+ Root: State with no parent state.

+ AND-state: State with orthogonal components that must all
be executed.

+ OR-state: State with orthogonal components of which
exactly one must be executed (“exclusive-or”).

+ Event: Triggers a transition to another state.
+ Condition: Guards a transition from occurring.

4+ Action: Carried out when a transition is taken.




Recap: Terminology

Static Reaction (SR): Action carried out as long as the system is in the
corresponding state.

Run: Responses of system to a sequence of external stimuli from the
environment,

Status: Snapshot of the system’s situation; a run is a sequence of statuses.
Step: Moving from one status to another.

Compound Transition (CT): Maximal chain of transition segments, linked by
connectors, that are executable simultaneously as a single transition.

Conflicting Transitions: Two transitions are in conflict if there is some common
state that would be exited if any one of them were to be taken.




How Does a Step "Happen®?

ste ste S

Status  status  status  status  status
(initial)




The Basic Step Algorithm

+ Inputs
+ The status of the system
List of states in which the system currently resides
List of activities currently active
Current values of conditions and data-items
List of events generated in the previous step
List of scheduled actions and their time for execution
List of timeout events and their time for occurrence
Relevant information on state history
+ The current time
+ Alist of external changes from the environment since the last step.
+ Events that have occurred
+ Changes in the values of conditions and data-items




The Basic Step Algorithm

+ Notation

+ (a, next-a) isascheduled action: a is an action that is
scheduled to happen attime next-a

+ (E, next-E) isatimeoutevent:E is an event that is
scheduled to happen at time next-E

+ E = tm(e, d),where eisthe event generated, and d is the
delay after which next-E should be generated

+ Output

+ A new system status




The Basic Step Algorithm

+ Stage 1: Step Preparation

Add the external events to the list of internally generated events.
Execute all the actions implied by the external changes.

For each pair (2, next-a) inthe list of scheduled actions:

if next-a <= current-time:
carry out a and remove (a, next-a) from the list

Foreach pair (E, next-E),E = tm(e, d):
if e 1s generated:
next-E := current-time + d
else if next-E <= current-time:
generate E and set next-E := infinity




The Basic Step Algorithm

+ Stage 2: Compute the contents of the step

Compute the set of enabled CTs.

Remove all the CTs that are in conflict with an enabled CT of higher priority.

Split the set of enabled CTs into maximal nonconflicting sets. (No two CTs in
any set are in conflict.)

For each set of CTs, compute the set of enabled SRs defined in states that are
currently active and are not being exited by any CT in the set.

If there are no enabled CTs or SRs
the step is empty
else if step 3 produced a single set
this set constitutes the step
else pick any one set




The Basic Step Algorithm

+ Stage 3: Execute the CTs and SRs.

(Define EN to be the set of enabled CTs and SRs from the previous
step.)

+ Foreach SR Xin EN, execute the action associated with X.

+ ForeachCT XinEN, let Sx and Sn be the sets of states exited and
entered by X, respectively.

+ Update the history of all the parents of states in Sx.
Delete the states in Sx from the list of current states.
Execute actions associated with exiting states in Sx.
Execute actions of X.

Execute actions associated with entering states in Sn.
Add the states in Sn to the list of current states.




The Basic Step Algorithm

+ Implementing the semantics of a step
1. Create a list of pairs.
4+ Each pairis of the form <element, new-value>.
+ element will be assigned new-value at the end of the step.
+  This guarantees that old values of elements are used.
2. Assign the elements the new values.

+ When an element is assigned a new value more than once, the last
assignment is used — write-write racing.




Two Models of Time

+ Questions
+ How does real-time relate to steps?
+ Whenis the internal clock advanced relative to the execution of
steps?
+ How long do steps take in terms of the clock?

4+ Two models of time

+ Synchronous: System executes a single step every time unit,
reacting to external changes since the last time-unit.

+ Asynchronous: System reacts whenever an external change
occurs. This allows several external changes to happen
simultaneously, and thus several steps to take place within a single

time-unit (a superstep).




Two Models of Time

+ In both models, the execution of a step seems to take zero
time.

+ No external changes have any effect during execution.

+ Asif time stops for the duration of execution.

+ STATEMATE supports both models.




Synchronous Model

+ Used for highly synchronous systemes.

+ Assume the previous step was executed at t. We can then
issue @ GO command during a simulation, which works as:

+ Execute all external changes since completion of last step.
+ Increment clock by one time-unit.
+ Execute all timeout events and scheduled actions that are due.

<+ Execute one step.




Asynchronous Model

+ Used for most kinds of asynchronous systems.

+ Since execution of steps “take” zero internal time, the
simulator must advance the internal time explicitly.

+ Different GO commands allow user to control the advance of
time:
+ GO-REPEAT
+ GO-ADVANCE
+ GO-STEP
+ GO-NEXT
+ GO-EXTENDED




GO-REPEAT

+ Steps:
+ Execute all external changes since completion of previous step.
+ Execute all timeout events and scheduled actions that are due.

+ Repeatedly execute one step until the system is in a stable state
(there are no generated events and no enabled CTs or SRs).

+ Does notincrement the internal clock, so many steps can be
executed at the same time. The repeat loop is thus a
superstep.

+ Canresultin aninfinite loop. Suspected infinite loops are
reported.




GO-REPEAT

Assume that C1, C2, C3 are false, and
environment generates event €.

Transition t1 is taken; system goes into

{A2, B1, D1};Clisnowtrueandf t: e/ £;u!(CH[A2 ) t2: [C2]/tr!(C3) @
is generated. __J

Transitions t3 and t4 are taken; 3: £/1(C2) (B2 | t6: [C3)
system goes into {A2, B2, D2};C2
Is now true.

4 [Ccl] (D2 ) s f @
Transition t2 is taken; system goes into __J
{A3, B2, D2};C3isnowtrue. this
not taken because f is not “alive”.

Transition t6 is taken; system isin {W}.




GO-ADVANCE

+ Used in conjunction with GO-REPEAT to advance the clock.

+ Steps (advancefromttot + n):
+ Execute all external changes since completion of previous step.
+ Sett’:=t + n.
+ Repeat the followinguntilt = t’:

+ Execute all timeout events and scheduled actions that are due.
Execute GO-REPEAT.

+
+ Set t”:=time of closest scheduled action or timeout event.
+ Sett:=min(t’, t”).




Other useful GO commands

+ GO-STEP: Execute one step without advancing the time.

+ GO-NEXT: Advance the clock to the time of the next timeout event
or scheduled action without carrying out a step. Before the time is
actually advanced, all steps that can be executed are executed.

GO-EXTENDED: GO-NEXT + GO-REPEAT.

+ Execute all external changes since the previous step.
+ If there are generated events or enabled CTs or SRs:
+ Execute a superstep.
+ Else:
+ Advance clock to time of next timeout event or scheduled action.
+ Execute the scheduled actions and timeout events that are due.
+ Execute a superstep.




STATEMATE Implementation

+ Hardware code generators let the user select between two
code styles in the generated HDL code:

+ RTL code style: Code executes at the rising or falling edge of a
clock = Synchronous mode.

+ Behavioral code style: Code reacts to any change in the inputs
the moment they occur = Asynchronous mode.

+ Software code generators generate one style of code, but
two different schedulers are provided that support different
time models.




STATEMATE Implementation

+ One scheduler uses CPU clock time.
+ Steps and supersteps take more than zero time.
+ External changes are sensed only at the start of a step.

+ External changes, timeout events, scheduled actions may occur
before system has stabilized.

+ The equivalent of GO-REPEAT is not supported.

+ Other scheduler uses simulated clock.
+ Clock only advances after the system is in a stable status.

+ External changes, timeout events, scheduled actions occur only
when the system is stable.

+ Behavior identical to asynchronous mode.




Racing Conditions

-+

-+

Occur when value of an element is modified more than once,
or is modified and used at a single point in time.

Our approach is greedy: multiple steps can be executed at
"the same point in time”, so racing problems can arise both in
a superstep and between transitions or actions executed in
different steps.

However, we should consider causality dependencies
between transitions in a single superstep. If thereis a
transition labelede / f; X := b5, thatenables another
transition labeled f / X := 6 to be executed, thereisno
“racing condition”.




Racing Conditions

+ What is a precise definition?
In each step and superstep, several transitions may be enabled.

Enabled transitions have a specific “enabling order”: each
transition is to be executed after the ones that enabled it.

There is a race condition if, had we executed the enabled
transitions in a different order (yet legal), we would have
obtained a different state.




Racing Conditions

When event e occurs, transition
t1 will be taken, then t2 and

t 3 in the next step, and finally
t4.

X should get the value 5and Y
should get the value 6.

But, semantics prescribe that t1
happen before t2 and t 3, and
that t4 happen after t3: t2 can
be postponed and still produce
a “legal” output.

Y could have a value different
from 6.

t3:

f

’ ' t4: / Y:=X+1

J

JC] )




Appendix A: Comparison with Other Work

+ Candidate for comparison is the RSML language of Leveson
et al. (1995): very similar underlying principles, main
differences are syntactical.

+ von der Beek (1994) lists 19 issues relevant to proposals for
semantics of statecharts.

+ Some are questions about which features the language
supports.

+ Semantic aspects of most issues are relevant only to supersteps.




Questions?

jo_ko_berkeley@berkeley.edu




