
QUO VADIS, SLD? REASONING 
ABOUT THE TRENDS AND 

CHALLENGES OF SYSTEM LEVEL 
DESIGN

Alberto Sangiovanni-Vincentelli

Presentation by Michael Zimmer
September 21st, 2010

1



Current Problems

 Exponentially rising complexity in circuits and 
systems
 Functionality

 Verification

 Time-to-market

 Productivity

 Safety and Reliability

 Can traditional design flows (i.e. RTL) continue to 
meet these demands?

 Embedded Systems more intricate

2



Possible Solutions

 Raise level of abstraction

 For chips, this means going above RTL

 60% productivity increase? (International Technology 
Roadmap for Semiconductors)

 New levels of design reuse

 Need new “design science” for embedded system 
design

 System Level Design

3



Challenges

 Heterogeneity and Complexity of the Hardware 
Platform

 Exponential complexity growth

 Transistors on a chip

 Expanding use of embedded systems

More networking

 Custom hardware implementations costly

 Design reuse?
 Looks more like a system (integrating predesigned components)

4



Challenges

 Embedded Software Complexity

 Reconfigurable and programmable hardware 
platforms increase reliance on software

 1+ million lines of code in cell phone

 100+ million lines of code in automobiles

 Embedded software requirements stricter

 Continuously react with environment

 Safety and reliability

 How to verify?

 Tens of lines per day

5



Challenges

 Integration Complexity

 Top-down approach?

 Requires knowledge of entire system for efficient 
partitioning

 Integration of predesigned or independently designing 
components?

 Need some way to standardize integration of components 
(often from different suppliers)

6



Challenges

 Industrial Supply Chain

 Health and efficiency essential

 System design needs to be supported across entire 
development

 Integration of tools and frameworks from separate 
domains

 Information flow between companies

 Can more efficiently meets demands (safety, cost, etc)

Who benefits?

7



Example: 
Mobile Communications Design Chain

 Application Developers
 Sell software directly to customer or come bundled with service 

provider

 Service Providers
 Access to network infrastructure

 Device Makers
 Manufacture cell phones with significant software content and 

hardware integration

 IP Providers
 Provide components to design chain

 Outsourcing Companies
 Manufacturing, design, etc

8



Example: 
Mobile Communications Design Chain

 Boundaries under stress

 SIM cards

 Cell phone locked to service provider, but cell phone can 
still operate with different providers

 Standards

 Not locked to one IC provider, IC provider can provide to 
multiple device makers

 Unified methodology and framework favors 
balance that maximizes welfare of the system

9



Example: Automotive Design Chain

 Car Manufactures (OEMs)
 GM, Ford, Toyota

 Provide final product

 Tier 1 Suppliers
 Bosch, Contiteves, Siemens

 Provide subsystems

 Tier 2 Suppliers
 Chip manufacturers, IP providers

 Manufacturing Suppliers
 Not as common for safety and liability reasons

10



Example: Automotive Design Chain

 Sharing IP and standards could improve time-to-
market, development, and maintenance costs

 AUTOSAR, world-wide consortium, has this goal in mind

 Hard real time software hard to share

 Can’t just add tasks and not affect behavior

 New, strong methodology needed that can guarantee 
functionality and timing

 Would cause restructuring of industry

 Plug and play environment results in better solutions

 Tier 1 suppliers?

11



Needs of Supply Chain

 Design chains should connect seamlessly

 Boundaries between companies are often not 
clean

Misinterpretations result in design errors

 Optimization hard beyond one boundary

12



Platform Based Design

 Current approaches address either software or 
hardware but not both

 Software approaches miss time and concurrency

 Hardware approaches too specific for software

 Don’t address all challenges

13



Desired Methodology

 Hardware and embedded software design as two 
faces of the same coin

 High levels of abstraction for initial design

 Effective architectural design exploration

 Detailed implementation by synthesis or manual 
refinement

 Platform

 Reuse and facilitating adaptation of a common design 
to various applications

14



Conventional Use of Platform 
Concept

 IC Domain

 Flexible IC where customization is achieved by 
programming components of the chip

 FPGA, DSP, MPU, etc

 Can’t always fully optimize

 Xilinx Virtex II 

 FPGA with software programming IPs

 Converging?

 Semiconductor companies adding FPGA-like blocks

 FPGA companies adding hard components

15



Conventional Use of Platform 
Concept

 PC Domain

 Standard platforms have enabled quick and efficient 
development

 X86 Instruction Set Architecture

 Fully specified set of busses (USB, PCI, etc)

 Full specification of I/O devices 

 Allows hardware/software codesign

16



Conventional Use of Platform 
Concept

 Systems Domain

 Platform allow quick development of new applications

 Sharing subsystems

 Common mechanical features on automobiles like engines, 
chassis, powertrains, etc

17



Platform-Based Design Methodology

 Main Principles

 Start at highest level of abstraction

 Hide unnecessary details of implementation

 Summarize important parameters of implementation 
in abstract model

 Limit design space exploration to available 
components

 Carry out design as sequence of refinements from 
initial specification to final implementation using 
platforms at various levels of abstraction

18



Platform-Based Design Methodology

 Platform
 Library of components usable at current level of 

abstraction
 Computational and communication blocks

 Characterized by performance and functionality

 Can have virtual components

 Platform Instance
 Set of components selected with set parameters

 Mapping functionality to architecture
 Important to keep separate

19



Platform-Based Design Process

 Meet-in-the-middle process

 Top-down: Map functionality into instance of platform 
and propagate constants

 Bottom-up: Build a platform by choosing components 
of the library

 Mapping becomes new functionality

20



Fractal Nature of Design
21



Platform-Based Design

 Partitioning of software and hardware is the 
consequence of decisions at higher levels of 
abstraction

 Platforms should restrict design space

 Establishing number, location, and components of 
intermediate platforms is the essence of PBD

 Precisely defined layers

 Better reuse

22



Example Application of PBD: 
Wireless Sensor Network Design

23



Model-Driven (Software) 
Development

 Closely resembles Platform-Based Design

 Model-Driven Architecture

 Platform-Independent Model

 Platform-Specific Models

 Interface definitions

 Separation of function and platform

24



Domain-Specific Languages

 Vanderbilt University group evolved MDD for 
embedded software design

 Because a single modeling language not suitable for all 
domains

 But how to define and integrate various models?

 Interaction must be mathematically well characterized

 This allows model transformations

25



Remarks on Platform-Based Design

 Is being adopted

 Well-defined layers of abstraction help supply 
chain where performance and cost are the 
contract between companies

 Designers do need to be trained in PBD and have 
supporting tools

26



Overview
27



Representing Functionality

 Need to capture at high level of abstraction without 
assumptions about implementation

 Languages for Hardware Design

 Attempts to raise abstraction levels

 SystemC

 C lacks concurrency and notion of time

 Capture particular aspects of hardware

 Used for simulation (not directly synthesizable or verifiable)

 SystemVerilog

 Extend Verilog (RTL) to higher abstraction level

28



Representing Functionality

 Languages for Embedded System Design

Want higher productivity and correctness guarantees

 Synchronous Languages

 Strong formal semantics to make verification and code 
generation possible

 Esterel, Lustre, Signal

 Safety-critical domain

29



Representing Functionality

 Models of Computation

 In traditional approaches, assumptions about 
architecture embedded in formulation

Want maximum flexibility while capturing design

Mathematically sound representations

 Discrete Time

 Flexible model

 Finite State Machines

 Less flexible, but easier to analyze and synthesize

30



Representing Functionality

 Heterogeneous Models of Computation
 Mixing models is not trivial
 Numerous approaches
 LSV Model, Interface Automata

 Environments for capturing designs
 Ptolemy II
 ForSyDe and SML-Sys
 Behavior-Interaction Priority Framework
 Signal Processing Worksystem
 Simulink
 LabVIEW

31



Representing Architecture

 Needs to be represented to enable mapping of 
functionality

 Netlist that establishes how a set of components is 
connected

 Capabilities should be included

 “Cost” needs to be computed

 Time, Power, etc.

32



Representing Architecture

 Software Architecture Description

 Unified Modeling Language (UML)

 Stresses successive refinement

 Graphical nature

 Too general? (difficult to express common programming 
constructs)

 Profiles allow redefining for specific applications

 SysML, Rational, Rhapsody, Tau

 Eclipse

 Integrated Development Environment

33



Representing Architecture

 Hardware Architecture Description
 Useful when providing model for performance and 

property analysis

 Transaction Level Modeling
 Levels of abstraction above RTL, can it do better?

 Assembly Tools
 CoWare, Synopses, Mentor, and ARM all exploring model 

creation, integration, simulation, and analysis

 Communication Based Design
 Design of interconnect infrastructure and IP interfaces

 Network-on-Chip

 Global Interconnect becoming dominant

34



Representing Architecture

 Hardware Architecture Description (cont)

Microprocessor Modeling

 Embedded systems normally contain software 
programmable processors

 Tradeoff between speed and accuracy when modeling

 Examples
 Virtual Processor Model

 C-Source Back Annotation

 Interpreted Instruction-Set Simulator

 Compiled Code Instruction-Set Simulator

 Worst Case Execution Time Estimation

35



Mapping

 Mapping functional description to hardware 
instance

 Mismatch of models of computation

 Asynchronous and synchronous

 If forced to be the same, restricts design space

 Scheduling

 For example, concurrent processes onto processor

 Static vs. dynamic

36



Mapping

 Correct-by-Construction Mapping – Giotto

 Solve scheduling problem by forcing models of 
computation to match

 Time-triggered architecture

 Separates platform independent functionality and 
timing from platform dependent scheduling

37



Mapping

 Automatic Mapping with Heterogeneous Domains

 Needs to be a way to automate mapping process

 Like logic synthesis

 Need common mathematical language between 
functionality and platform

 Tradeoffs in mapping

 Granularity vs. Optimality

38



Metropolis Framework

 Unified framework for platform-based design

 Allows for different levels of abstraction and 
models of computation

 Metropolis Meta-Model

Most models of computation and formal languages 
can be translated into it

 Can be used to capture and analyze functionality, and 
describe architectures and mapping

39



Metropolis Framework

 Functional Model

 Functional netlist of a network of processes

 Architectural Model

 Architectural netlist is an interconnection of 
computational and communication components

 Mapping

Mapping netlist instantiates both functional and 
architectural netlist with synchronization constraints

40



Metropolis Framework

 Tool Support

 Allows for back-end tools for analysis

 Simulator 

 translates to SystemC

 Verification

 Synthesis

 Easy to incorporate external tools

41



Metropolis Framework

 Related Work

 None support all the requirements of PBD

 Polis System

 Co-Design Finite State Machines

 Limitations of target architecture and model of computation

 VCC

 Artemis Workbench

 Mescal

 CoFluent Studio

 Simulink-Based Flows

42



Metropolis Design Example: 
JPEG Encoder Design

 Goal: Map algorithm efficiently onto a 
heterogeneous architecture

 Modeling and Design Space Exploration

 Architecture-independent model of JPEG Encoder in 
Metropolis

 Processor modeled in Metropolis

 Design Space Exploration and Results

 Tried different mapping scenarios

 Simulation close to actual implementation

43



Conclusions

 Platform-Based Design is a unifying design 
methodology for system design

 Promising achievements so far, but work still to be 
done
 Better understand relationships in heterogeneous 

environment

More efficient algorithms and tools

More models must be developed

 Industry must embrace new paradigms

 Academia must develop new curricula

44


