
Heterogeneous Reactive Models and
Correct-by-Construction Deployment

Alberto L. Sangiovanni-Vincentelli

EECS Department

University of California at Berkeley

With A. Benveniste, L. Carloni and P. Caspi

Synchronous Model

• A synchronous process evolves according to an
infinite sequence of successive reactions

• The parallel composition of two processes is the
conjunction of their reactions
– product of automata, FSM connection

Pi  Ri

P1||P2  (R1R2)





• Pi: synchronous process

• Ri: set of all possible
reactions of process Pi

• : indicates non-
terminating reactions

Synchronous Model

• Foundation of Synchronous Languages
– Esterel, Lustre, Signal

• Pervasive in Mathematics and Engineering
– Discrete-Dynamic Control Systems

– Digital Integrated Circuit Design

• When composition is possible, we can
reason formally on the properties of the
composite system based on the properties
of its components
– Notice: generally, functional systems are not

closed under concurrent composition

Synchronous Assumption

• Communication Delay is negligible w.r.t.
Computation Delay

• The system transitions
between a reaction and
the other instantaneously
and the communication of
the values from the
outputs of a component
to the inputs of another
takes zero time

loop each tick

read inputs

compute next state

write outputs

end loop

Distributed Nature of Implementations

• in hardware
– with DSM technologies, the chip becomes a

distributed system
– wire delays not negligible w.r.t. transistor delays
– on-chip communication latency is hard to estimate

• in (embedded) software
– applications with distributed nature badly matching

the synchronous assumption
• real-time safety critical embedded systems in avionics and

automotive industries
• industrial plants, transportation/power networks

– large variations in computation/communication times
– hard to maintain a global notion of time

DSM: Percentage of Reachable Die

0

20

40

60

80

100

250 180 130 100 80 60

16 clock cyles

8 clock cycles

4 clock cycles

2 clock cycles

1 clock cycle

• “For a 60 nanometer process a signal can reach only 5%
of the die‟s length in a clock cycle” [D. Matzke,1997]

• Cause: Combination of high frequencies and slower wires

Electronics for the Car: A Distributed System

Information
Systems

T
e

le
m

a
ti

c
s

F
a

u
lt

 T
o

le
ra

n
t

Body
Electronics B

o
d

y
F
u

n
c
ti

o
n

s

F
a

il
 S

a
fe

F
a

u
lt

F
u

n
c
ti

o
n

a
l

Body
Electronics

D
ri

v
in

g
 a

n
d

 V
e

h
ic

le
D

y
n

a
m

ic
 F

u
n

c
ti

o
n

s

Mobile Communications Navigation

Fire
Wall

Access to
WWW

DAB

Gate
Way

Gate
Way

Theft warning

Door Module
Light Module

Air
Conditioning

Shift by
Wire

Engine
Management

ABS

Steer by
Wire

Brake
by Wire

MOST
Firewire

CAN
Lin

CAN
TTCAN

FlexRay

Today, more
than 80
Microprocessors
and millions of
lines of code

Outline

• A common formal framework for the study of
– Models of Computation (MOCs)

– synchronous, asynchronous, GALS

– event absence in modeling distributed systems

– the de-synchronization problem

• De-synchronization of embedded software
programs

• properties of endochrony and isochrony

• Concluding Remarks

• Event : a member of V x T,
• V : set of values, T : set of tags

• Signal : a set of events
• s = { (v1, t1), (v2, t2), … , (vk, tk) }

The Tagged-Signal Model [Lee & Sangiovanni „96]

• Process : a subset P of the set of N-tuples of
signals

• Behavior : a tuple of signals b = (s1, s2, …, sN)
which satisfies a process P

• System : a composition of processes P1,… ,PM

• (i.e. the intersection of their behaviors)

More on Tags

• Tags can be a mechanism to express time
– across various levels of abstraction

• Logical Time in initial specification

• Physical (“Real”) Time in final implementation

• But tags are essentially a tool to express
constraints
– Coordination constraints

• among events of the same signal

• among signals of the same behaviors

The “Absent-Value” Event ()

u

v

tag t2t1 t4t3 t6t5 t8t7 t10t9 t12t11 t14t13

4 -2 5 3-1 20 46 2

1 1 1 0 1 1 1 1

• a signal s is present at tag t when
e=(t,d)  s | d≠

• otherwise, s is absent at tag t

Assumption on the Tags of a Signal

• For any tag t  T, each signal s in the
system has at most one event, i.e.

bB, sb,

[e1s e2s | tag(e1) = tag(e2)]

• This implies
– a total order < among the tags of a signal

– a total order < among the events of a signal

Ordering Tags in a Process

• Generally, process tags are not ordered

• When used to express causality relations
among signals, it is common to assume a
partial order 

t < t‟ when t  t‟ and t  t‟

• Timed System: the set T of tags
(timestamps) is a totally ordered set.

– the ordering among the timestamps of a signal s
induces a natural order on the set of events of s

 t,t‟ (t  t‟  (t < t‟ or t > t‟))

Tags

• Assumption: the tag set T is partially ordered

t < t‟  (t  t‟  tt‟)

• A clock h is a non-decreasing map N  T

• Modeling Heterogeneity: the set T of tags can
be adjusted to account for different class of
systems (synchronous, asynchronous, timed,…)

TAGS generalize and heterogeneize

X

Y

U

X

Z

1,t1

1,s1 2,s2

3,t3 4,t4

4,s4

a TAG consisting of the triple (reaction, phys.time,
causality)

TAGS generalize and heterogeneize

X

Y

U

t1 t2 t3 t4

2 3

• TAGS can belong to any partially ordered set – tags can index
reactions, can be real time R, can encode causality, can do both, etc.

• TAGS can be tuples – desynchronization can be generalized to
erasing some components of the tag; yields morphisms of tag sets,
we denote them by r, a

• different TAG sets can be used for different systems – we can
mix synchronous systems (with tag set N) and asynchronous ones
(with trivial tag set), and more

Synchronous Systems

• Time change  any bijective and strictly-
increasing function : T  T

• Rt : set of all time changes over T

• P is stuttering-invariant iff for every behavior
bP and every time change Rt

b  P  { (t,d)  b  ((t),d)  b }
Stuttering-invariance  invariance under time change

Synchronous Events, Behaviors, Processes

• Synchronous Events have the same tag

• Synchronous Signals s1s2 when

• Synchronous Behaviors

• Synchronous Processes

eis1, ejs2 (eiej) and
eks2, els1 (ekel)

b1b2 when sib1, sjb2, (sisj)

P1P2 when biB(P1), bjB(P2), (bibj)

s1s2 when tag(s1) = tag(s2)

Synchronous Systems

• Stand-alone synchronous behavior b when bb

• Synchronous process (system) P when PP

• In a synchronous system P, every signal is
synchronous with every other signal

• Equivalently, for each tag t a signal has
exactly one corresponding event

bB(P),sb tT(P), (es | tag(e)=t)

Synchronous Systems - Example

• 3 processes, 4 signals

w

x

0 1 0

1 5 11 13

y

z

1 0 1 0

3 7 9 15

0 2 10 102 6 6 14

0 4 4 120 0 8 8

tag t2t1 t4t3 t6t5 t8t7

Q R

Py

w

z

x

1

Synchronous Languages (Signal)

• Simplicity of synchronous assumption plus the
power of concurrency in system specification

• Notion of clock of a variable
– a Boolean meta-variable tracking the absence/presence

of a value for the corresponding variable
• clocks: equivalence classes of simultaneously-present variables

• The Signal compiler uses clock calculus to
1. statically analyze every program statement

2. identify each variable’s clock

3. schedule the overall computation

Asynchronous Events, Behaviors, Processes

• Asynchronous Events have different tags

• Asynchronous Signals

• Asynchronous Behaviors

• Asynchronous Processes

s1  s2 when eis1,ejs2 (eiej)

b1  b2 when sib1,sjb2, (si  sj)

P1  P2 when biB(P1),bjB(P2), (bi  bj)

s1  s2 when tag(s1)  tag(s2)

Asynchronous Systems

• Stand-alone asynchronous behavior b when bb

• Asynchronous process (system) P when P  P

• In an asynchronous system P, every signal is
asynchronous with every other signal
– signals have disjoint tag sets

• Equivalently, for each tag t there is exactly
one event across all signals

b=(s1,…,sM)B(P),tT(P),

(e  i si | tag(e)=t)

T F T F T F T F ….

1 1 1 1 ….

T F T F T F T F ….

1 1 1 1 ….

Asynchronous Systems

• T={.}, singleton (trivial set)
– No global coordination information is available

– No information on absolute/relative ordering of events

– Absence cannot be sensed/used to exercise control

– Composition  separate unification of each common variable flow
(models unbounded-FIFO communication, Kahn PNs, Rendezvous)

t0 t1 t2 t3 t4 t5 t6 t7 ….tags

b

x
Pa

T F T F T F T F ….

1 1 1 1 ….

T F T F T F T F ….

1 1 1 1 ….

b

x
Qa

Asynchronous Systems - Example

Qa Ra

Paya

wa

za

xa

tag t2t1 t4t3 t6t5 t8t7 t10t9 t12t11 t14t13

wa

xa 1 5

ya

za

0 1

3 7

0 22 6

0 40

0
t15

1

• The 3 asynchronous processes
communicate by sharing
signals (as in the synchronous
case) but signals don‟t share
tags

“In-Between” Systems

• Formally, the set of asynchronous systems is
not the complement of the set of synchronous
systems
– there is an “In-Between System” set

• An element of the “In-Between Set” is
– a process with a behavior that has both at least a

pair of synchronous events (hence, it is not
asynchronous) and at least a tag for which a signal
does not present a corresponding event while another
does (hence, it is not synchronous)

Eg

Pg

Qg Rg

w1

y2 z2

y1

x1 x2

z1

w2 w3

“In-Between” Systems: GALS Systems

• Computation occurs in
synchronous clusters
exchanging data
asynchronously via a set
of communication media

• Set P of computation

processes Pg, Qg, Rg

• Media process Eg

Pi,PjP, (i=j  PiPj and ij  PiPj)

PiP,bB(Eg), (b|V(Pi) B(Pi))

GALS Systems - Example

w1

y2

1 

 0 2

z2

w2

 0

0

 01 1

x1

y1

1

2 

w3

x2

3  5

0 2

1 10

1 3

z1

w1

w2

w3

0 40

x1

x2

y1

y2

z1

z2

tag t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14



4

1 

0

2



   

 

1 

 0 2

 0

0



4

1 

0

2



   

 

  



 01 1

1

2 

3  5

0 2

1 10

1 3

0 40

Pg

Qg

Rg

Eg

Modeling Communication Media

• Signal Decoupling
– model a communication thread between two processes

• From a global viewpoint, a GALS system is a
system with multiple tag sets (a multi-clock
system)
– each tag set represents dimension a that is familiar

to a synchronous process and extraneous to all other
synchronous processes

• Differently from synchronous systems,
“unexpected” absent value events may arrive
– computation may be badly affected if the process

cannot recognize this issue

The Role of Absence

• GALS Systems

– tT(s)  event absence

– tT(s)  e=(t,d)  s | d=  value absence

– tT(s)  e=(t,d)  s | d  presence

• Synchronous Systems

– event absence does not occur (value absence does)
– signal decoupling is not necessary

– “instantaneous” communication

– computation and communication never overlap

• Asynchronous Systems

– events are systematically absent
• a present event in a signal  absences in all remaining signals!!

• no common reference across processes

• processes rely on robust handshaking protocols

Automatic Deploying of Synchronous
Designs on Distributed Architectures

• Need of techniques to make each process of a
GALS system robust with respect to absence

• Under which conditions we can guarantee that
– sensing an absent value event when a different value

was expected does not produce incorrect behavior

– not sensing an absent value event when one is expected
does not change the behavior of the system

• Two approaches
– Latency-Insensitive Design

– De-synchronization of Synchronous Programs

Semantic Equivalence

• Same sequence of values after discarding the
absent events

• Semantic equivalence doesn‟t say anything about
tags
– two processes may be semantic equivalent even with

disjoint tag sets

• The systems of the previous examples (synch.,
asynch., GALS) are semantic equivalent

u

v

tag t2t1 t4t3 t6t5 t8t7 t10t9 t12t11 t14t13

4 -2 5 3-1 24 6

4 -2 5 -1 3 4 2 6

4 -2 5 3-1 24 6

4 -2 5 -1 3 4 2 6

De-synchronization of Synchronous
Programs

• mapping a sequence of tuples of values in domains
extended with the absent value  into a tuple of
sequences of present values, one sequence per each
variable
1. remove synchronization barriers among reactions

2. individually compress the sequence of values for each variable

u

v

tag t2t1 t4t3 t6t5 t8t7 t10t9 t12t11 t14t13

4 -2 5 3-1 20 46 2

1 1 1 0 1 1 1 1

u

v

4 -2 5 3-1 20 46 2

1 1 1 0 1 1 1 1



PP

(P)

Semantic-Preserving Time Changes

• Given P1=(V1,T1), P2=(V2,T2) with time
change mappings :T1  T and :T2  T

let T1=T2 and consider two semantics:

-the Strong Semantics P1|| P2

-the Weak Semantics P1 ( || ) P2

•  is semantics-preserving when two
behaviors, which compose according to
the strong semantics, compose also
according to the weak one, i.e.

P1 || P2  P1 (||) P2

i  {1,2} : (Pi) is in bijection with Pi

and
(P1 || P2) = (P1) || (P2)

Theorem

• Given P1=(V1,T1), P2=(V2,T2) with T1=T2:

P1 || P2  P1 (||) P2

Endochrony & Isochrony

• A process P is endochronous when
– for each tag t of its behaviors the presence/absence of

events on all its signals can be inferred incrementally from
the values of a subset of them that are guaranteed to be
present at t

• Two processes P1,P2 are isochronous when
– for each tag t, if there is a pair of shared signals that are

present and agree on the event value, then, for each other
pair of shared signals, either they are present and agree on
the same value or they are absent

• Endochrony and isochrony are expressed in terms of
transition-relations (not infinite behaviors)
– They can be model-checked

– They can be synthesized: for a given process P wrapper
processes can be derived and composed with P to guarantee
each property

Conclusion

• Heterogeneous reactive systems modeled as
tagged systems

• Tag sets to capture: reaction indices,
physical time, causalities… and their
combination

• Desynchronizing  erasing (part of) tags

• Theorems to cast semantics preserving as
specific algebraic properties of tuples of
systems

• To get effective algorithms for correct-by-
construction deployment

