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Synchronous Model

• A synchronous process evolves according to an 
infinite sequence of successive reactions

• The parallel composition of two processes is the 
conjunction of their reactions
– product of automata, FSM connection 

Pi  Ri

P1||P2  (R1R2)





• Pi: synchronous process

• Ri: set of all possible 
reactions of process Pi

• : indicates non-
terminating reactions 



Synchronous Model

• Foundation of Synchronous Languages
– Esterel, Lustre, Signal

• Pervasive in Mathematics and Engineering
– Discrete-Dynamic Control Systems

– Digital Integrated Circuit Design

• When composition is possible, we can 
reason formally on the properties of the 
composite system based on the properties 
of its components
– Notice: generally, functional systems are not 

closed under concurrent composition 



Synchronous Assumption

• Communication Delay is negligible w.r.t. 
Computation Delay

• The system transitions
between a reaction and 
the other instantaneously
and the communication of 
the values from the 
outputs of a component 
to the inputs of another 
takes zero time

loop each tick

read inputs

compute next state

write outputs

end loop



Distributed Nature of Implementations

• in hardware
– with DSM technologies, the chip becomes a 

distributed system
– wire delays not negligible w.r.t. transistor delays
– on-chip communication latency is hard to estimate

• in (embedded) software
– applications with distributed nature badly matching 

the synchronous assumption
• real-time safety critical embedded systems in avionics and 

automotive industries
• industrial plants, transportation/power networks

– large variations in computation/communication times
– hard to maintain a global notion of time



DSM: Percentage of Reachable Die
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• “For a 60 nanometer process a signal can reach only 5% 
of the die‟s length in a clock cycle” [D. Matzke,1997]

• Cause: Combination of high frequencies and slower wires



Electronics for the Car: A Distributed System
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Outline

• A common formal framework for the study of
– Models of Computation (MOCs)

– synchronous, asynchronous, GALS

– event absence in modeling distributed systems

– the de-synchronization problem

• De-synchronization of embedded software 
programs

• properties of endochrony and isochrony

• Concluding Remarks



• Event : a member of V x T, 
• V : set of values, T : set of tags

• Signal : a set of events 
• s = { (v1, t1), (v2, t2), … , (vk, tk) } 

The Tagged-Signal Model [Lee & Sangiovanni „96]

• Process : a subset P of the set of N-tuples of 
signals

• Behavior : a tuple of signals b = (s1, s2, …, sN) 
which satisfies a process P

• System : a composition of processes P1,… ,PM

• (i.e. the intersection of their behaviors)



More on Tags

• Tags can be a mechanism to express time
– across various levels of abstraction

• Logical Time in initial specification

• Physical (“Real”) Time in final implementation

• But tags are essentially a tool to express 
constraints
– Coordination constraints 

• among events of the same signal

• among signals of the same behaviors  



The “Absent-Value” Event (  )

u

v

tag t2t1 t4t3 t6t5 t8t7 t10t9 t12t11 t14t13

4 -2 5 3-1 20 46 2

1 1 1 0 1 1 1 1

• a signal s is present at tag t when
e=(t,d)  s | d≠

• otherwise, s is absent at tag t



Assumption on the Tags of a Signal

• For any tag t  T, each signal s in the 
system has at most one event, i.e.

bB, sb, 

[ e1s e2s | tag(e1) = tag(e2) ]

• This implies 
– a total order < among the tags of a signal

– a total order < among the events of a signal



Ordering Tags in a Process

• Generally, process tags are not ordered

• When used to express causality relations 
among signals, it is common to assume a 
partial order 

t < t‟ when t  t‟ and t  t‟

• Timed System: the set T of tags 
(timestamps) is a totally ordered set. 

– the ordering among the timestamps of a signal s 
induces a natural order on the set of events of s

 t,t‟ ( t  t‟  (t < t‟ or t > t‟) )



Tags

• Assumption: the tag set T is partially ordered

t < t‟  ( t  t‟  tt‟ )

• A clock h is a non-decreasing map N  T

• Modeling Heterogeneity: the set T of tags can 
be adjusted to account for different class of 
systems (synchronous, asynchronous, timed,…)



TAGS generalize and heterogeneize
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a TAG consisting of the triple (reaction, phys.time, 
causality)



TAGS generalize and heterogeneize

X

Y

U

t1 t2 t3 t4

2 3

• TAGS can belong to any partially ordered set – tags can index 
reactions, can be real time R, can encode causality, can do both, etc.

• TAGS can be tuples – desynchronization can be generalized to 
erasing some components of the tag; yields morphisms of tag sets, 
we denote them by r, a

• different TAG sets can be used for different systems – we can 
mix synchronous systems (with tag set N) and asynchronous ones 
(with trivial tag set), and more



Synchronous Systems

• Time change  any bijective and strictly-
increasing function : T  T

• Rt : set of all time changes over T

• P is stuttering-invariant iff for every behavior 
bP and every time change Rt

b  P  { (t,d)  b  ((t),d)  b }
Stuttering-invariance  invariance under time change



Synchronous Events, Behaviors, Processes

• Synchronous Events have the same tag

• Synchronous Signals s1s2 when

• Synchronous Behaviors

• Synchronous Processes

eis1, ejs2 (eiej) and
eks2, els1 (ekel)

b1b2 when sib1, sjb2, (sisj)

P1P2 when biB(P1), bjB(P2), (bibj)

s1s2 when tag(s1) = tag(s2)



Synchronous Systems

• Stand-alone synchronous behavior b when bb

• Synchronous process (system) P when PP

• In a synchronous system P, every signal is 
synchronous with every other signal

• Equivalently, for each tag t a signal has 
exactly one corresponding event

bB(P),sb tT(P), (es | tag(e)=t)



Synchronous Systems - Example

• 3 processes, 4 signals
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Synchronous Languages (Signal )

• Simplicity of synchronous assumption plus the 
power of concurrency in system specification 

• Notion of clock of a variable
– a Boolean meta-variable tracking the absence/presence 

of a value for the corresponding variable
• clocks: equivalence classes of simultaneously-present variables

• The Signal compiler uses clock calculus to 
1. statically analyze every program statement

2. identify each variable’s clock

3. schedule the overall computation  



Asynchronous Events, Behaviors, Processes

• Asynchronous Events have different tags

• Asynchronous Signals

• Asynchronous Behaviors

• Asynchronous Processes

s1  s2 when eis1,ejs2 (eiej)

b1  b2 when sib1,sjb2, (si  sj)

P1  P2 when biB(P1),bjB(P2), (bi  bj)

s1  s2 when tag(s1)  tag(s2)



Asynchronous Systems

• Stand-alone asynchronous behavior b when bb

• Asynchronous process (system) P when P  P

• In an asynchronous system P, every signal is 
asynchronous with every other signal 
– signals have disjoint tag sets

• Equivalently, for each tag t there is exactly 
one event across all signals

b=(s1,…,sM)B(P),tT(P), 

(e  i si | tag(e)=t)



T      F      T      F      T      F      T      F      …. 

1               1              1              1       ….

T      F      T      F      T      F      T      F      ….

1              1               1              1               ….

Asynchronous Systems

• T={.}, singleton (trivial set)
– No global coordination information is available

– No information on absolute/relative ordering of events

– Absence cannot be sensed/used to exercise control

– Composition  separate unification of each common variable flow
(models unbounded-FIFO communication, Kahn PNs, Rendezvous)
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Asynchronous Systems - Example
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• The 3 asynchronous processes 
communicate by sharing 
signals (as in the synchronous 
case) but signals don‟t share 
tags



“In-Between” Systems

• Formally, the set of asynchronous systems is 
not the complement of the set of synchronous 
systems
– there is an “In-Between System” set

• An element of the “In-Between Set” is
– a process with a behavior that has both at least a 

pair of synchronous events (hence, it is not 
asynchronous) and at least a tag for which a signal 
does not present a corresponding event while another 
does (hence, it is not synchronous)
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“In-Between” Systems: GALS Systems

• Computation occurs in 
synchronous clusters
exchanging data 
asynchronously via a set 
of communication media

• Set P of computation 

processes Pg, Qg, Rg

• Media process Eg

Pi,PjP, (i=j  PiPj and ij  PiPj)

PiP,bB(Eg), ( b|V(Pi) B(Pi) )



GALS Systems - Example
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Modeling Communication Media

• Signal Decoupling
– model a communication thread between two processes

• From a global viewpoint, a GALS system is a 
system with multiple tag sets (a multi-clock 
system)
– each tag set represents dimension a that is familiar 

to a synchronous process and extraneous to all other 
synchronous processes

• Differently from synchronous systems, 
“unexpected” absent value events may arrive
– computation may be badly affected if the process 

cannot recognize this issue



The Role of Absence

• GALS Systems

– tT(s)  event absence

– tT(s)  e=(t,d)  s | d=  value absence

– tT(s)  e=(t,d)  s | d  presence

• Synchronous Systems

– event absence does not occur (value absence does)
– signal decoupling is not necessary

– “instantaneous” communication

– computation and communication never overlap

• Asynchronous Systems

– events are systematically absent
• a present event in a signal  absences in all remaining signals!! 

• no common reference across processes 

• processes rely on robust handshaking protocols



Automatic Deploying of Synchronous 
Designs on Distributed Architectures

• Need of techniques to make each process of a 
GALS system robust with respect to absence

• Under which conditions we can guarantee that
– sensing an absent value event when a different value 

was expected does not produce incorrect behavior

– not sensing an absent value event when one is expected 
does not change the behavior of the system

• Two approaches
– Latency-Insensitive Design

– De-synchronization of Synchronous Programs 



Semantic Equivalence

• Same sequence of values after discarding the 
absent events 

• Semantic equivalence doesn‟t say anything about 
tags
– two processes may be semantic equivalent even with 

disjoint tag sets

• The systems of the previous examples (synch., 
asynch., GALS) are semantic equivalent

u

v

tag t2t1 t4t3 t6t5 t8t7 t10t9 t12t11 t14t13

4 -2 5 3-1 24 6

4 -2 5 -1 3 4 2 6

4 -2 5 3-1 24 6

4 -2 5 -1 3 4 2 6



De-synchronization of Synchronous 
Programs

• mapping a sequence of tuples of values in domains 
extended with the absent value  into a tuple of 
sequences of present values, one sequence per each 
variable
1. remove synchronization barriers among reactions

2. individually compress the sequence of values for each variable

u

v

tag t2t1 t4t3 t6t5 t8t7 t10t9 t12t11 t14t13

4 -2 5 3-1 20 46 2

1 1 1 0 1 1 1 1

u

v

4 -2 5 3-1 20 46 2

1 1 1 0 1 1 1 1



PP

(P)



Semantic-Preserving Time Changes

• Given P1=(V1,T1), P2=(V2,T2) with time 
change mappings :T1  T and :T2  T

let T1=T2 and consider two semantics:

-the Strong Semantics P1|| P2

-the Weak Semantics P1 ( || ) P2

•  is semantics-preserving when two 
behaviors, which compose according to 
the strong semantics, compose also 
according to the weak one, i.e.

P1 || P2     P1  (||)  P2



i  {1,2} : (Pi) is in bijection with Pi

and   
( P1  || P2 ) =  (P1) || (P2)

Theorem

• Given P1=(V1,T1), P2=(V2,T2) with T1=T2:

P1 || P2     P1  (||)  P2



Endochrony & Isochrony

• A process P is endochronous when 
– for each tag t of its behaviors the presence/absence of 

events on all its signals can be inferred incrementally from 
the values of a subset of them that are guaranteed to be 
present at t

• Two processes P1,P2 are isochronous when
– for each tag t, if there is a pair of shared signals that are 

present and agree on the event value, then, for each other 
pair of shared signals, either they are present and agree on 
the same value or they are absent

• Endochrony and isochrony are expressed in terms of 
transition-relations (not infinite behaviors) 
– They can be model-checked

– They can be synthesized: for a given process P wrapper 
processes can be derived and composed with P to guarantee 
each property



Conclusion

• Heterogeneous reactive systems modeled as 
tagged systems

• Tag sets to capture: reaction indices, 
physical time, causalities… and their 
combination

• Desynchronizing  erasing (part of) tags

• Theorems to cast semantics preserving as 
specific algebraic properties of tuples of 
systems

• To get effective algorithms for correct-by-
construction deployment


