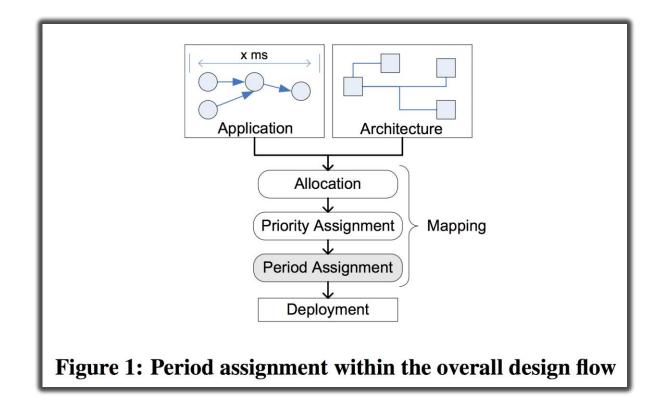
Period Optimization for Hard Real-time Distributed Automotive Systems

Presenters: Forrest landola and llge Akkaya

Abhijit Davare¹, Qi Zhu¹, Marco Di Natale², Claudio Pinello³, Sri Kanajan², Alberto Sangiovanni-Vincentelli¹ ¹EECS, UC Berkeley ²General Motors Research

³ Cadence Research Labs

Big Picture

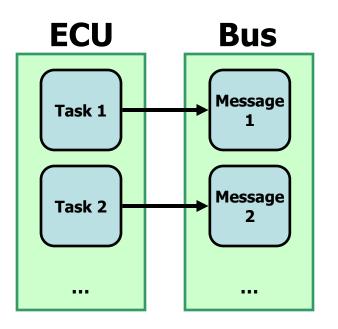


Goal: choose periods that minimize task response times

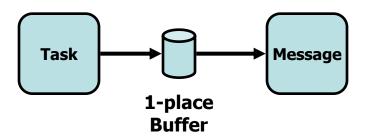
Outline

- System model
- Scheduling requirements
- Continuous approximation of response time analysis
- Formulate optimization problem to:
 - Choose periods
 - Minimize sum of task response times

System Model

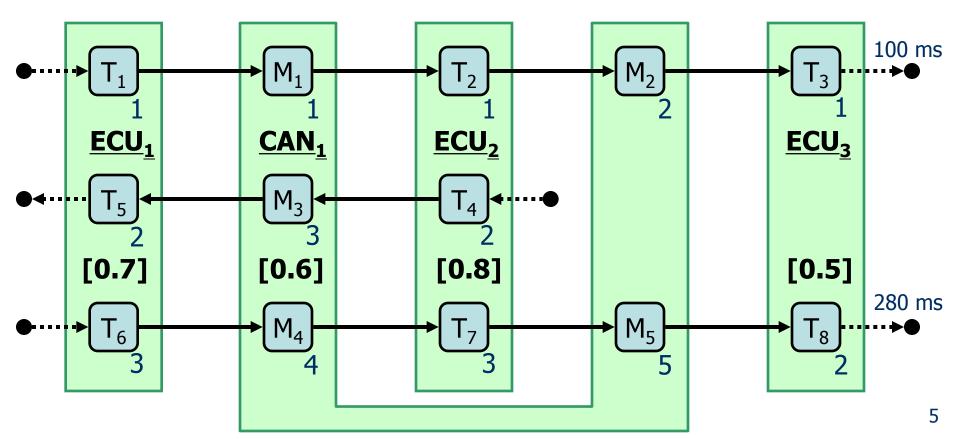


- Tasks allocated to ECUs
 - Preemptive execution
 - Scheduling: static priorities
- Messages allocated to buses
 - Non-preemptive transmission
 - Scheduling: static priorities



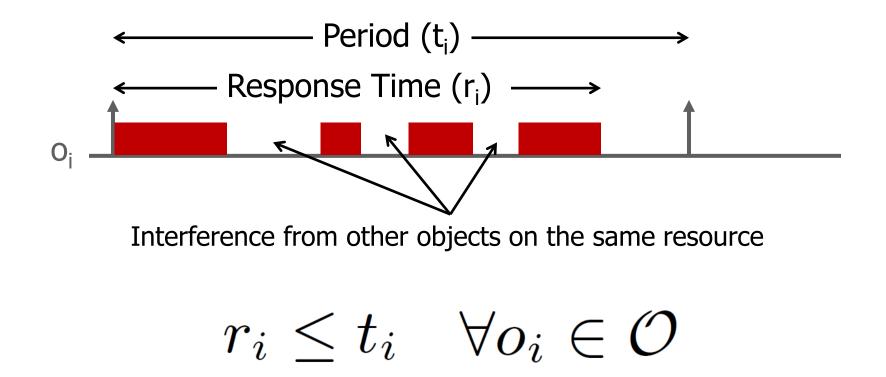
Problem Inputs

- Sets
 - Paths: *P*
 - Objects: $\mathcal{O} = \mathcal{T} \cup \mathcal{M}$
 - Resources: ${\cal R}$



1. Object Schedulability

 Ensure that all objects are processed before their subsequent activations

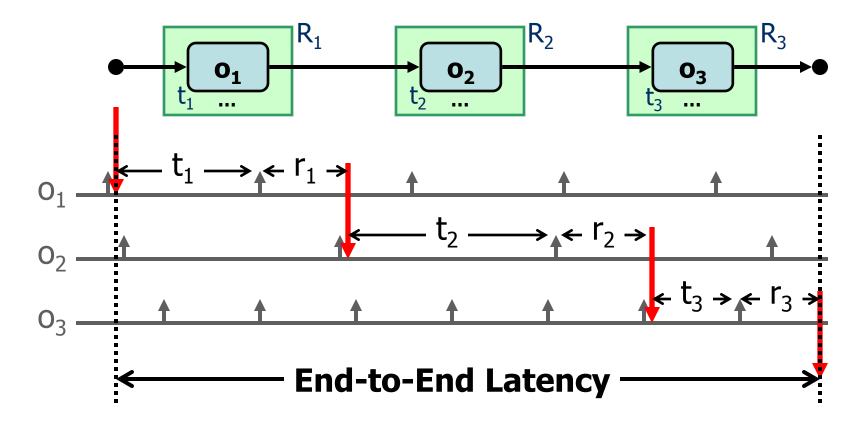


2. Utilization Bounds

- Resource utilization
 - Fraction of time the resource (either ECU or bus) spends processing its objects (either tasks or messages)
- Utilization bounds less than 100%
 - To allow for future extensibility
- Intuition: Larger periods lower utilization

$$\left(\sum_{i:o_i\to R_j}\frac{C_i}{t_i}\right) \leq u_j " R_j \in \mathbf{R}$$

3. End-to-End Latency (minimize this)

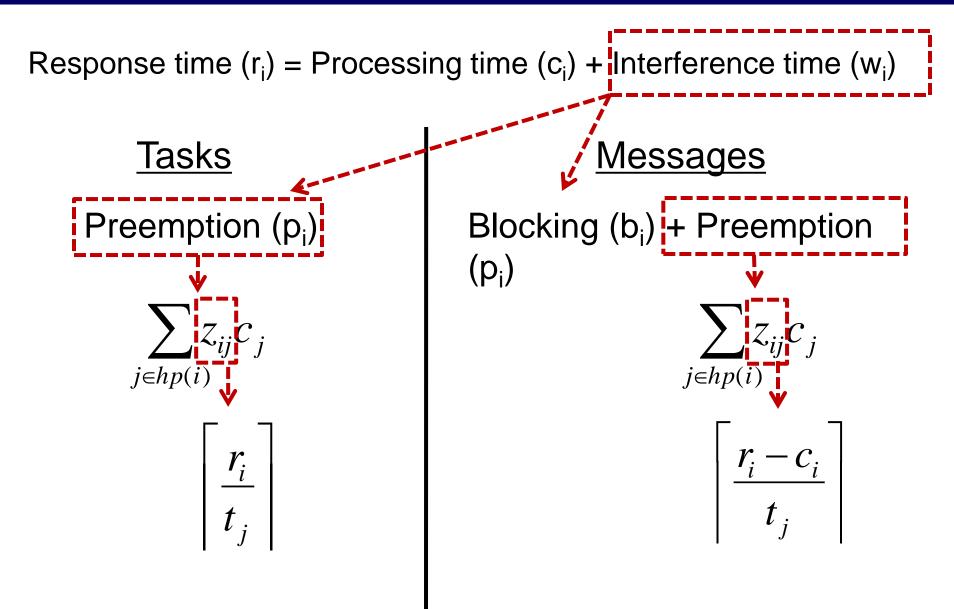


- For each object in the path, add
 - Period (t_i) $\ell_p = \sum t_i + r_i \quad \forall p \in \mathcal{P}$

 $o_i \in p$

Worst case response time (r_i)

Worst Case Response Times



Continuous RTA Approximation

- Getting rid of the ceiling enables convex optimization
- Approximate the ceiling function
 - Constant parameter: $0 \le \alpha_i \le 1$
 - Approximated worst case response time: s_i

$$r_{i} = c_{i} + \sum_{j \in hp(i)} \left\lceil \frac{r_{i}}{t_{j}} \right\rceil c_{j} \qquad \forall o_{i} \in \mathcal{T}$$

$$\int_{s_{i}} s_{i} = c_{i} + \sum_{j \in hp(i)} \left(\frac{s_{i}}{t_{j}} + \alpha_{i} \right) c_{j} \quad \forall o_{i} \in \mathcal{T}$$

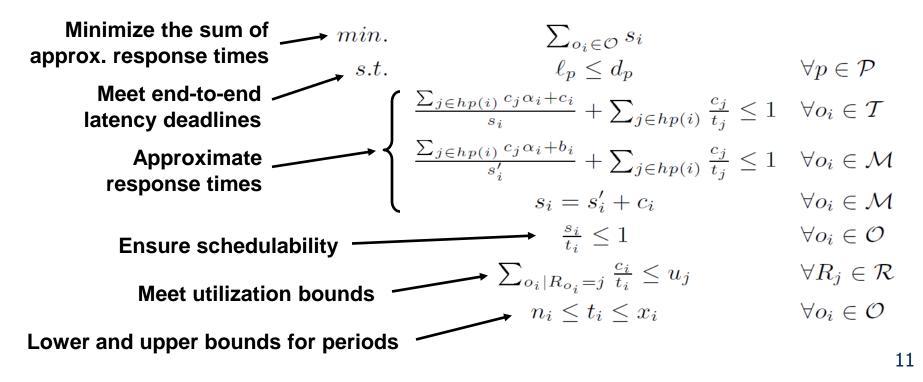
Convex Optimization Formulation

Sets

- Paths: *P*
- Objects: $\mathcal{O} = \mathcal{T} \cup \mathcal{M}$
- Resources: $\mathcal R$

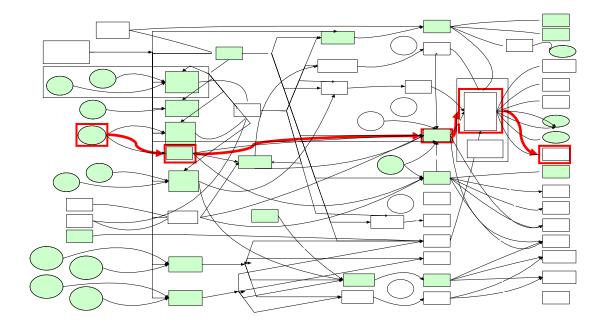
Parameters

- Computation time: c
- Decision Variables
 - Periods: t
 - Approx. response times: s



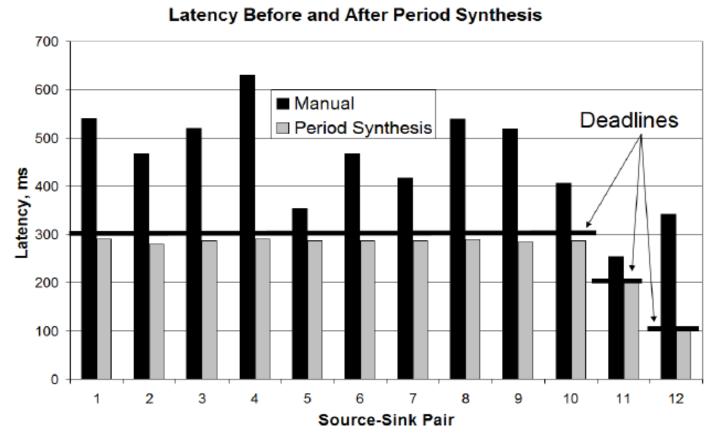
Case Study: GM Experimental Vehicle

- Functionality
 - 92 tasks
 - 196 messages
- Architecture
 - 38 ECUs
 - 4 buses



- End-to-end latency constraints
 - 12 source-sink task pairs
 - 222 total paths
 - Deadlines range from 100ms to 300ms

Experiments: Manual vs. Period Opt.



- Feasible schedule with $\alpha = 1$ in 1st iteration
- Solution time: 24s on Pentium M with <1GB of RAM</p>

Critique

Good

- Clear system model and scope
- For a real system, the optimization takes only a few minutes on a cheap processor

Future work

- Paper only considers periodic tasks. Sporadic tasks (e.g. proportional to engine RPM) are common in automotive systems.
- Cheap heuristics to approximate the optimization while the system is running?

Conclusions

- Described a continuous approximation of response time analysis
- Formulate optimization problem to:
 - Choose periods
 - Minimize sum of task response times
- Applied the analysis to a real system, outperformed hand-tuned schedule