

INTELLIGENT TIRE SYSTEM

Pierluigi Nuzzo, Safa Messaoud, Ben Zhang

INTELLIGENT TIRE SYSTEM

Distributed architecture for real-time data acquisition of road-surface and vehicular information from sensors located inside the tire of a car

- System Architecture
- Personal Area Network (PAN)
- Lowest level: sensor nodes
- Upper level: PAN coordinator (communication with the sensor nodes, synchronization)
- System Control Host (the highest level coordinator of the network)
- □ <u>UWB Communication System</u>
- UWB radio transmission
- Preferable with respect to narrow-band transmission and spread spectrum techniques

Signal Properties

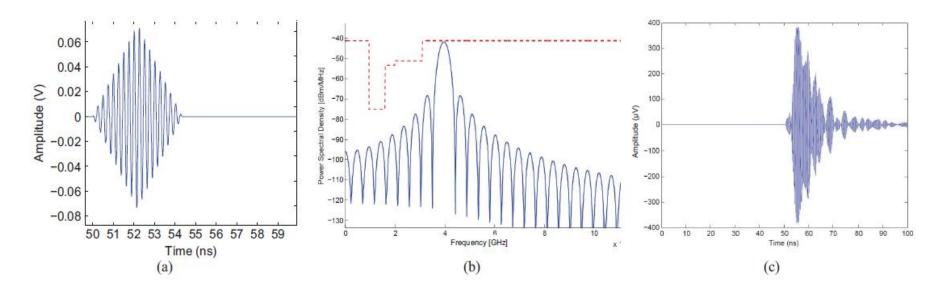
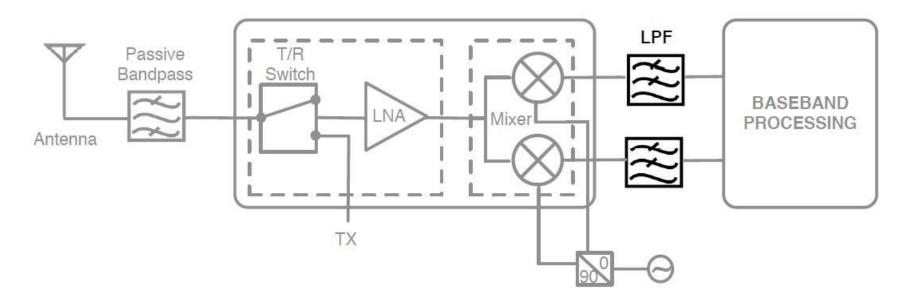
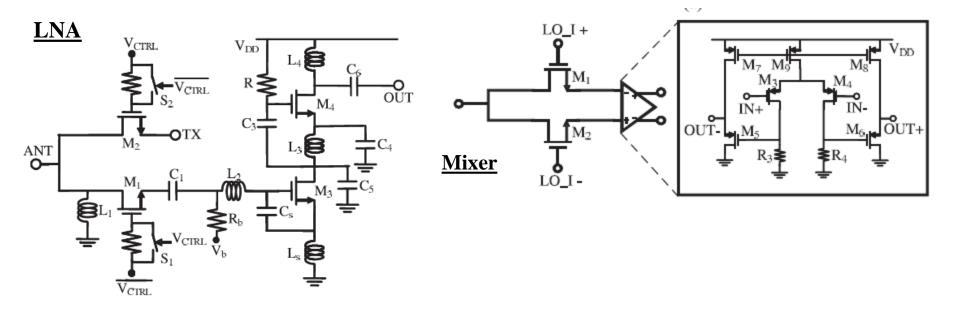



Fig. 4. (a) Triangular transmitter pulse. (b) Pulse spectrum, showing a 500-MHz -10-dB bandwidth. (c) Received signal, including channel attenuation and multipath effect.

UWB RECEIVER FRONT-END DESIGN

- A. Receiver Requirements
- **B. RF** Front-End Exploration
- C. Low Pass Filter Abstraction
- **D.** Receiver Composition and Optimization


A. Receiver Requirements

RECEIVER SPECIFICATION SET

Data rate	10 Mbps	
Center frequency	3.96 GHz	
Signal bandwidth (-10 dB)	500 MHz	
BER	< 10 ⁻³	
Sensitivity	-60 dBm	
Gain	$\geq 40 \text{ dB}$	
Noise figure	< 4.6 dB	
<i>11P</i> 3	$\geq -27 \text{ dBm}$	
Base-band attenuation	$\geq 60 \text{ dB}$ at 460 MHz	

B. RF Front-End Exploration

□ RF front-end: LNA + passive Mixer (M1 and M2)+low noise gain stage (M3-M8)

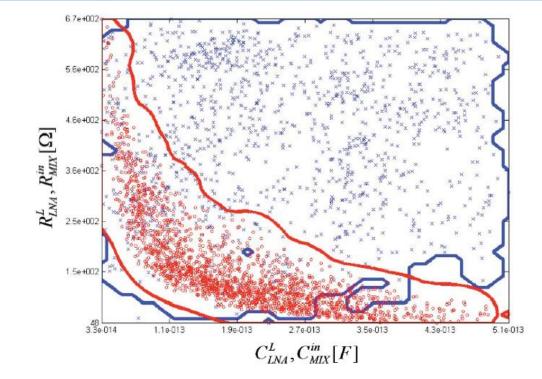
- **1.** AP components and contracts
- 2. **RF Front-End Composition**

1. AP components and contracts

LNA component

- Specify the related variables
- Assumptions & Guarantees (ALNA, GLNA)

 $A_{LNA} = \{(R_L, C_L) : R_L \in [85, 520], C_L \in [0.03, 0.25] \text{ pF}\}$


GLNA is the set of performance figures ζLNA that satisfy $PLNA(\zeta LNA) = 1$ and are obtained by evaluating the mapping φLNA on the input, configuration and interface variables in ALNA.

□ <u>Mixer component</u>

□ CLNA and CMIX: horizontal contracts

2. RF Front-End Composition

- $\Box \quad CRF = CLNA \bigotimes CMIX$
- The intersection between the set of configurations assumed by the LNA and the set of configurations offered by the Mixer is non-empty.

Design Exploration Via Optimization

$$\min_{\zeta_{LNA},\zeta_{MIX}} \omega_{1} \cdot P_{RF} + \omega_{2} \cdot \Theta(NF_{RF})$$

$$\int_{\zeta_{LNA},\zeta_{MIX}} IIP_{3_{RF}} \geq -35 \text{ dBm}$$

$$K_{RF} \geq 15 \text{ dB}$$

$$NF_{RF} \leq 5 \text{ dB}$$

$$\zeta_{RF} = \phi_{RF}(u_{RF}; \zeta_{LNA}, \iota_{LNA}, \zeta_{MIX}, \iota_{MIX})$$

$$\mathcal{P}_{LNA}(\zeta_{LNA}) = 1, \quad \mathcal{P}_{MIX}(\zeta_{MIX}) = 1$$

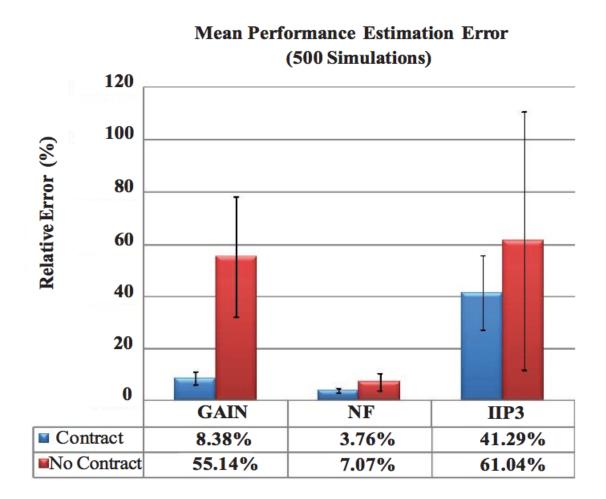
$$Z_{MIX}^{in} \in A_{LNA}^{L}, \quad Z_{LNA}^{out} \in A_{MIX}^{S}$$

$$Z_{RF}^{S} \in A_{LNA}^{S}, \quad Z_{RF}^{L} \in A_{MIX}^{L}$$

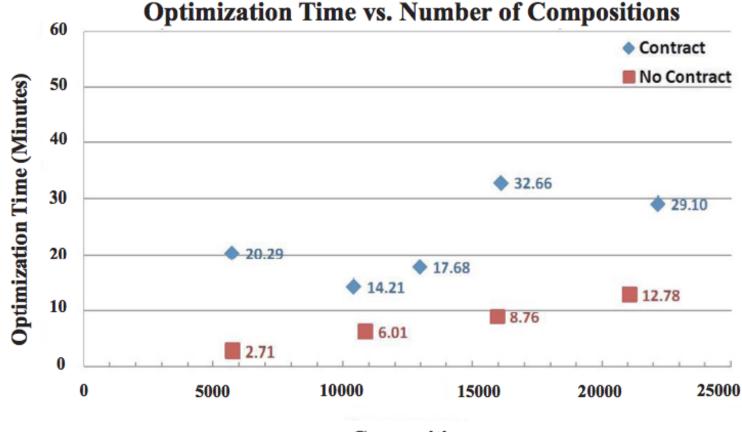
7186/20730 satisfied the contracts

21 minutes on a 3.16 GHz Intel Core2 Duo Workstation to obtain the optimum

Optimization Results

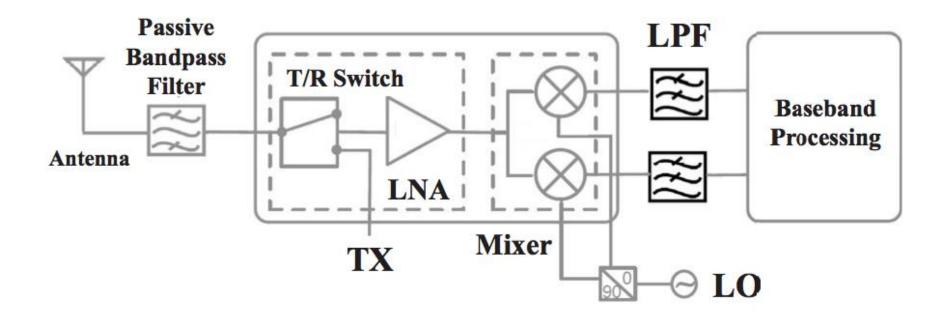

TABLE II

OPTIMIZATION AND SIMULATION RESULTS

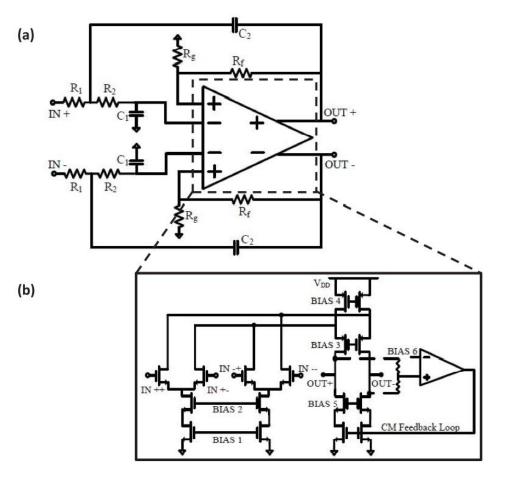

Performance	LNA	Mixer RF front-en		RF front-end	
(3.96 GHz)	(Optimal)	(Optimal)	(Optimal) Estimation		
NF (dB)	3.49	13.3	3.7	3.89	
Gain (dB)	23.5	-3.57	19.9	18.74	
IIP3 (dBm)	-13.7	-7.37	-30	-27.96	
Power (mW)	5.4	1.67	7.07	7.07	

Transistor-level simulation using the nearest neighbors

Contract-based vs. No Contract



Optimization Computation Cost



Compositions

Low Pass Filter

Low Pass Filter Abstraction

$$H_{SK}(s) = \frac{K_{SK}}{\frac{s^2}{\omega_0^2} + \frac{s}{Q\omega_0} + 1}$$

Filter Behavioral Model

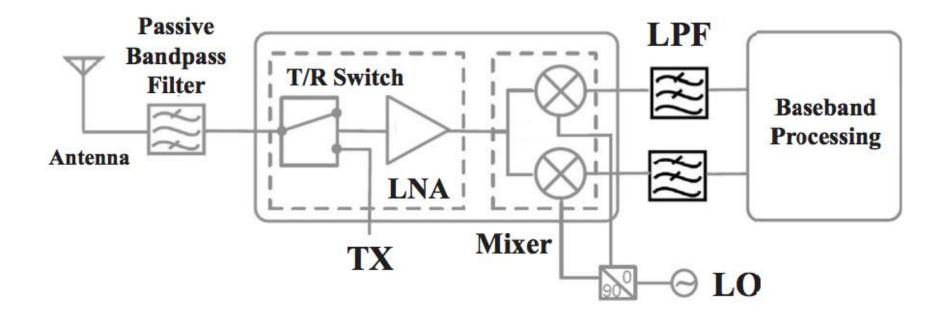
$$\omega_0 = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}$$

$$Q = \frac{\sqrt{R_1 R_2 C_1 C_2}}{C_1 (R_1 + R_2) + R_1 C_2 (1 - K_{SK})}$$

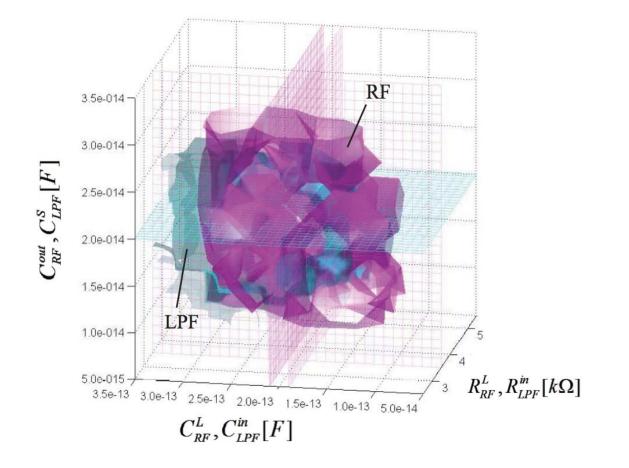
Performance and Interface Parameters

 $(P_{SK}, Q, \omega_0, N_{SK}, K_{SK}, HD_3, Z_{in}, Z_{out})$ Power consumption **Cell quality-factor Resonant angular frequency** Output noise power Gain Third-order harmonic distortion Input impedance Output impedance

 $A_{SK}^{S,L} = \{ (R_S, C_S, R_L, C_L) : R_S \in [100, 1000] \ \Omega, \\ C_S \in [0.01, 1] \text{ pF}, R_L \in [1, 1000] \text{ K}\Omega, C_L \in [0.1, 10] \text{ pF} \} \\ R_S \leq 0.1 \cdot R_1 \qquad R_L \geq 10 \cdot R_{out}^{SK}$


Benefit of contracts

1.18% No Contract Number of Designs 1200 Contract 10.2% 1000 800 600 400 200 0 10 -30 -20 -10 0 20 30 40 Gain Error (%) 1200 -5% No Contract Number of Designs Contract 1000 800 600 65% 400 200 -100 -80 -60 -40 -20 20 0 40 60 80


Sallen-Key Error Distribution for 4000 Design Configurations

Bandwidth Error (%)

Receiver

Receiver Composition

Receiver Optimization

 $C = \sum_{i} \omega_{i} \Theta_{i}(\zeta_{RX}^{i})$

Data rate	10 Mbps	
Center frequency	3.96 GHz	
Signal bandwidth (-10 dB)	500 MHz	
BER	< 10 ⁻³	
Sensitivity	-60 dBm	
Gain	≥ 40 dB	
Noise figure	< 4.6 dB	
<i>П</i> Р3	$\geq -27 \text{ dBm}$	
Base-band attenuation	\geq 60 dB at 460 MHz	

Receiver Optimization Results

	Gain	Power	NF	IIP3
	(dB)	(mW)	(dB)	(dBm)
Min. Noise	42	18.6	3.46	-19
Min. Power	45.8	13.6	4.14	-21
Max. IIP3	40	14.5	4.58	-11.6
Max. Gain	51	20.0	3.88	-19.2

	Gain	Power	BW	NF	IIP3
	(dB)	(mW)	(MHz)	(dB)	(dB)
Mean	0.6	0.2	14	0.18	2.06
Variance	1.24	0.3	18	0.15	1.66