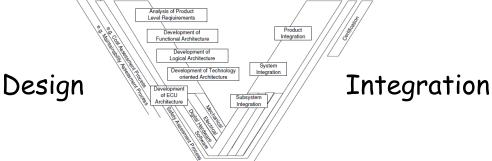
Taming Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems

Surveyed and presented by Hokeun Kim, Antonio Iannopollo EECS, University of California, Berkeley

Introduction

- Cyber-physical systems
 - Integrations of computation with physical processes
 - Distributed in nature, involves large industries
- Complexities in designing cyber-physical systems
 - Complexity in systems
 - Distributed systems with heterogeneous components
 - Complexity in supply chains
 - Different vendors using a variety of design methods

Introduction (cont'd)



- Contract-based design
 - Solution to cope with design complexity in cyber-physical systems
 - Formulates a broad and aggressive scope
 - Models description of functions, performances (time, energy, etc.), and safety
- Contracts
 - Formalizations of the conditions for correctness of element integration
 - Assume/Guarantee reasoning
 - C=(A,G)={Assumptions, Promises}

Methodologies

- For complexity of systems
 - Layered design
 - Supporting design activities at the corresponding level of abstraction
 - Component-based design
 - Assembling components with concise and rigorous interface specifications horizontally
 - The V-model of the design process
 - Splitting product development process into design and integration

Methodologies (cont'd)

- For complexity of systems (cont'd)
 - Model-based development (MBD)
 - Support early requirement validation and virtual system integration
 - Virtual integration
 - Virtually integrate system, based on models of subsystems
- For complexity of supply chain
 - Standardization of design entities
 - Standardization/harmonization of processes

Contract model overview

- Implementation
 - An instantiation "M" of a component, consists of
 - A set "P" of ports and variables
 - A set "M" of behaviors (or runs) which assign a history of "values" to ports
- Contract
 - Assertion "E"
 - A set of behaviors over ports
 - Contract "C", a pair of assertions "(A,G)" where
 - "A" represents assumptions given by an environment (physical part of a cyber-physical system)
 - "G" represents promises guaranteed by an implementation (cyber part of a cyber-physical system)

Contract-Based Design for Cyber-physical Systems

Contract model overview

- Relationship between an implementation "M" and an assertion "E" and a contract "C=(A,G)"
 - $M \subseteq E$, "M" satisfies "E"
 - M ∩ A ⊆ G, For given assumption "A", "M" satisfies "G", or M ⊨ C
- Controlled, uncontrolled ports and receptiveness
 - Ports of an implementation can be partitioned into controlled and uncontrolled ports, $\pi = (u,c)$
 - Assertion "E" is P'-receptive: E accepts any history offered to the subset P' of its ports P

Contract model overview (cont'd)

- Conjunction Π
 - If $M \models C_f \sqcap C_t$, then $M \models C_f \land M \models C_t$
- Dominance
 - $C \leq C'$: C=(A,G) dominates C'=(A',G') iff $A \supseteq A'$ and $G \subseteq G'$
 - If $M \models C$ and $C \leq C'$, then $M \models C'$
- Consistency and Compatibility
 - For profile π = (u,c), where "u" represents uncontrolled ports and "c" represents controlled ports and contract C=(A,G)
 - C is consistent if G is u-receptive
 - C is compatible if A is c-receptive

Contract-Based Design for Cyber-physical Systems