
EE249 Discussion:
Synchronous Modeling

David Burnett
Wei Yang Tan



Synchronous Approach 
to Reactive and Real-Time 

Systems



● Reactive systems
○ maintains a permanent interaction with its 

environment
○ for e.g. classical communication protocols

● Real-Time systems
○ reactive systems that are also subject to externally 

defined timing constraints
○ for e.g. car, air-traffic control

Some Definitions



Inadequacies in Classical 
Techniques

● Lack of support for concurrency
○ e.g. finite-state machine (FSM)

● No modularity in structure -> not scalable
○ e.g. Petri Nets, FSM

● Not deterministic
○ e.g. Petri Nets, OS primitives, classical concurrent 

programming language (ADA)
● No formal techniques for specifications / 

verifications
○ e.g. using OS primitives for communications



New Synchronous Modeling 
Approach

● Output is synchronous with input
● Internal actions are instantaneous
● Communications are performed via 

instantaneous broadcasting
● Environment signals is modeled in a form of 

global interleaving:

signal 1 signal 1 signal 1

signal 2signal 2signal 2

simultaneous
events are ordered arbitrary interval "time"



State-based Formalism

● E.g. Statecharts, ESTEREL
● Easy to adopt when control flow is prevalent
● But defining behavior of a concurrent 

composition is difficult



Dataflow-based Approach

● Multiple Clocked Recurrent Systems 
modeling, which uses different time indices

● E.g. LUSTRE
● Easy to adopt when data flow is prevalent
● But difficult to model functioning mode 

changes 



Synchronous Models to 
Asynchronous Systems

● We can use synchronous approach to 
validate asynchronous execution

● For example, for data-flow asynchronous 
execution:



Conclusion

Implement

analyze
specification 

Synchronous 
programming 
approach

verify

Reactive / 
real-time 
systems



Implementing 
Synchronous Models on 
Loosely Time Triggered 

Architectures



● Designing with a synchronous model is 
simpler, easier to analyze & verify

● Ensuring synchrony in implementation is 
difficult

● Can we design synchronously but implement 
something that executes asynchronously?

Overview



LTTA improvements over TTA

● Time-triggered architecture (TTA) is decent 
but has some limitations in complex 
configurations and long delays

● Loose TTA (LTTA) is more flexible
● Paper discusses Finite FIFO Platforms 

(FFPs), which include even more flexibility



Synchronous system boundaries

● No self-loops without a unit delay (UD)
● Leads to set of equations to model functions
● Equations executed following any partial 

order sequence



Loosely Time-Triggered Architecture

● Each node runs one process
● Communicates via Communication by 

Sampling (CbS), i.e., one-way buffer
● Paper adds features to standard CbS to aid 

deduplication and message ordering
● Assume each process completes before 

being triggered again



Finite FIFO Platforms (FFPs)

● Directed, point to point, lossless FIFO 
queues between sequential processes

● Non-blocking R/W
● API implemented appropriately
● Same execution length assumption as 

LTTAs



Map Synchronous Models on FFP

● Queue size of 1-2, depending on unit delay
● Code mapping from synch model to FFP 

described
● Skipping introduced to handle overflow
● Deadlock guarantee given
● Existing proof re-use performed via relating 

the Synchronous FFP to a Marked Directed 
Graph (MDG) or Kahn Process Network 
(KPN)

● Queues then allowed to grow without check



Implementation of FFP on LTTA

● Using LTTA operations to complete each 
FFP API command is described
○ Each FFP command is implemented with a finite 

number of LTTA operations
○ LTTA operations are nonblocking



Throughput & Latency

● Worst-case analyzed
○ Processes trigger asynchronously or on top of one 

another, causing skipping
● Special topologies: chains, loops
● Synchronous models

○ Analysis with non-negligible delays



Closing

● Criticism regarding skip feature, data loss via 
overwrite

● Many extensions possible
○ Jitter
○ Multirate
○ Multicast
○ Average-case



Thank you!


