
OSEK/VDX

• a standard for an open-ended architecture for distributed
control units in vehicles

• the name:

– OSEK: Offene Systeme und deren Schnittstellen für die Elektronik
im Kraft-fahrzeug (Open systems and the corresponding interfaces
for automotive electronics)

– VDX: Vehicle Distributed eXecutive (another french proposal of
API similar to OSEK)

– OSEK/VDX is the interface resulted from the merge of the two
projects

• http://www.osek-vdx.org

Motivations

• high, recurring expenses in the development and
variant management of non-application related aspects
of control software.

• incompatibility of control units made by different
manufacturers due to different interfaces and protocols

Objectives

• portability and reusability of the application software

• specification of abstract interfaces for RTOS and
network management

• specification independent from the HW/network details

• scalability between different requirements to adapt to

specific application needs

• verification of functionality and implementation using a

standardized certification process

Advantages

• clear savings in costs and development time.

• enhanced quality of the software

• creation of a market of uniform competitors

• independence from the implementation and

standardised interfacing features for control units with
different architectural designs

• intelligent usage of the hardware present on the
vehicle

– for example, using a vehicle network the ABS controller could
give a speed feedback to the powertrain microcontroller

System philosophy

• standard interface ideal for automotive applications

• scalability

– using conformance classes

• configurable error checking

• portability of software

– in reality, the firmware on an automotive ECU is 10% RTOS
and 90% device drivers

Support for automotive requirements

• the idea is to create a system that is

– reliable

– with real-time predictability

• support for

– fixed priority scheduling with immediate priority ceiling

– non preemptive scheduling

– preemption thresholds

– ROM execution of code

– stack sharing (limited support for blocking primitives)

• documented system primitives

– behavior

– performance of a given RTOS must be known

Static configuration

• everything is specified before the system runs

• static approach to system configuration

– no dynamic allocation on memory

– no dynamic creation of tasks

– no flexibility in the specification of the constraints

• custom languages that helps off-line configuration of

the system

– OIL: parameters specification (tasks, resources, stacks…)

– KOIL: kernel aware debugging

Application building process

Application
code

RTOS configuration

drivers configuration
DIL

RTOS library
.a

device drivers
C/ASM code

OIL
Conf. Tool

C/ASM
Compiler

device drivers
templates

RTOS
configuration

C code
ORTI description

KOIL

Linker

Debugger

objects
.o
objects
.o
objects
.o

DIL
Conf. Tool

binary image
.elf

input

output

third part libraries

C file with
OSEK APIs

OIL file
application
description

OIL file
RTOS

description

Provided by
application
developer

Provided by
RTOS vendor

OSEK/VDX standards

• The OSEK/VDX consortium packs its standards in different

documents

• OSEK OS operating system

• OSEK Time time triggered operating system

• OSEK COM communication services

• OSEK FTCOM fault tolerant communication

• OSEK NM network management

• OSEK OIL kernel configuration

• OSEK ORTI kernel awareness for debuggers

• next slides will describe the OS, OIL, ORTI and COM parts

Processing levels

• the OSEK OS specification describes the

processing levels that must be supported by an

OSEK OS

priority

LOWLOWLOWLOW

HIGHHIGHHIGHHIGH

Task Task Task Task levellevellevellevel

preemption=no

OS/OS/OS/OS/SchedulingSchedulingSchedulingScheduling

preemption=yes

Interrupt Interrupt Interrupt Interrupt levellevellevellevel

RuntimeRuntimeRuntimeRuntime
contextcontextcontextcontext

With OS services

Without OS
services

Events=yes/no

Conformance classes

• OSEK OS should be scalable with the application
needs

– different applications require different services

– the system services are mapped in Conformance Classes

• a conformance class is a subset of the OSEK OS
standard

• objectives of the conformance classes

– allow partial implementation of the standard

– allow an upgrade path between classes

• services that discriminates the different conformance
classes

– multiple requests of task activations

– task types

– number of tasks per priority

Conformance classes (2)

• there are four conformance classes

– BCC1
basic tasks, one activation, one task per priority

– BCC2
BCC1 plus: > 1 activation, > 1 task per priority

– ECC1
BCC1 plus: extended tasks

– ECC2
BCC2 plus: > 1 activation (basic tasks), > 1 task per priority

Conformance classes (3)

Basic tasks

• a basic task is

– a C function call that is executed in a proper context

– that can never block

– can lock resources

– can only finish or be preempted by an higher priority task or
ISR

• a basic task is ideal for implementing a kernel-
supported stack sharing, because

– the task never blocks

– when the function call ends, the task ends, and its local
variables are destroyed

– in other words, it uses a one-shot task model

• support for multiple activations

– in BCC2, ECC2, basic tasks can store pending activations (a
task can be activated while it is still running)

Extended tasks

• extended tasks can use events for synchronization

• an event is simply an abstraction of a bit mask

– events can be set/reset using appropriate primitives

– a task can wait for an event in event mask to be set

• extended tasks typically

– have their own stack

– are activated once

– have as body an infinite loop over a WaitEvent() primitive

• extended tasks do not support multiple activations

– ... but supports multiple pending events

Scheduling algorithm

• the scheduling algorithm is fundamentally a

– fixed priority scheduler

– with immediate priority ceiling

– with preemption threshold

• the approach allows the implementation of

– preemptive scheduling

– non preemptive scheduling

– mixed

• with some peculiarities...

Scheduling algorithm: peculiarities

• multiple activations of tasks with the same priority

– are handled in FIFO order

– that imposes in some sense the internal scheduling data
structure

OSEK task primitives (basic and extended tasks)

TASK(<TaskIdentifier>) {…}

– used to define a task body (it’s a macro!)
DeclareTask(<TaskIdentifier>)

– used to declare a task name (it’s a macro!)
StatusType ActivateTask(TaskType <TaskID>)

– activates a task
StatusType TerminateTask(void)

– terminates the current running task (from any function nesting!)
StatusType ChainTask(TaskType <TaskID>)

– atomic version of TerminateTask+ActivateTask
StatusType Schedule(void)

– rescheduling point for a non-preemptive task
StatusType GetTaskID(TaskRefType <TaskID>)

– returns the running task ID
StatusType GetTaskState(TaskType <TaskID>, TaskStateRefType

<State>)

– returns the status of a given task

OSEK event primitives

DeclareEvent(<EventIdentifier>)

– declaration of an Event identifier (it’s a macro!)

StatusType SetEvent(TaskType <TaskID>, EventMaskType <Mask>)

– sets a set of event flags to an extended task

StatusType ClearEvent(EventMaskType <Mask>)

– clears an event mask (extended tasks only)

StatusType GetEvent(TaskType <TaskID>, EventMaskRefType <Event>)

– gets an event mask

StatusType WaitEvent(EventMaskType <Mask>)

– waits for an event mask (extended tasks only)

– this is the only blocking primitive of the OSEK standard

Scheduling algorithm: Resources (1)

• resources

– are typical Immediate Priority Ceiling mutexes

– the priority of the task is raised when the task locks the resource

Scheduling algorithm: Resources (2)

• resources at the interrupt level

– resources can be used at interrupt level

– for example, to protects drivers

– the code must directly operate on the interrupt controller

Scheduling algorithm: Resources (3)

• preemption threshold implementation

– done using “internal resources” that are locked when the task
starts and unlocked when the task ends

– internal resources cannot be used by the application

OSEK resource primitives

DeclareResource(<ResourceIdentifier>)

– used to define a resource (it’s a macro!)

StatusType GetResource(ResourceType <ResID>)

– resource lock function

StatusType ReleaseResource(ResourceType <ResID>)

– resource unlock function

RES_SCHEDULER

– resource possibly used by every task �the task becomes
non preemptive

Interrupt service routine

• OSEK OS directly addresses interrupt management in

the standard API

• interrupt service routines (ISR) can be of two types

– Category 1: without API calls
simpler and faster, do not implement a call to the scheduler at
the end of the ISR

– Category 2: with API calls
these ISR can call some primitives (ActivateTask, ...) that
change the scheduling behavior. The end of the ISR is a
rescheduling point

• ISR 1 has always a higher priority than ISR 2

• finally, the OSEK standard has functions to directly

manipulate the CPU interrupt status

OSEK interrupts primitives

ISR(<ISRName>) {…}

– define an ISR2 function

void EnableAllInterrupts(void)

void DisableAllInterrupts(void)

– enable and disable ISR1 and ISR2 interrupts

void ResumeAllInterrupts(void)

void SuspendAllInterrupts(void)

– enable and disable ISR1 and ISR2 interrupts (nesting possible!)

void ResumeOSInterrupts(void)

void SuspendOSInterrupts(void)

– enable and disable only ISR2 interrupts (nesting possible!)

Counters and alarms

• counter

– is a memory location or a hardware resource used to count
events

– for example, a counter can count the number of timer
interrupts to implement a time reference

• alarm

– is a service used to process recurring events

– an alarm can be cyclic or one shot

– when the alarm fires, a notification takes place

• task activation

• call of a callback function

• set of an event

OSEK alarm primitives

DeclareAlarm(<AlarmIdentifier>)

– declares an Alarm identifier (it’s a macro!)

StatusType GetAlarmBase (AlarmType <AlarmID>,

AlarmBaseRefType <Info>)

– gets timing informations for the Alarm

StatusType GetAlarm (AlarmType <AlarmID> TickRefType <Tick>)

– value in ticks before the Alarm expires

StatusType SetRelAlarm(AlarmType <AlarmID>,

TickType <increment>, TickType <cycle>)

StatusType SetAbsAlarm(AlarmType <AlarmID>,

TickType <start>, TickType <cycle>)

– programs an alarm with a relative or absolute offset and period

StatusType CancelAlarm(AlarmType <AlarmID>)

– cancels an armed alarm

Application modes

• OSEK OS supports the concept of application modes

• an application mode is used to influence the behavior

of the device

• example of application modes

– normal operation

– debug mode

– diagnostic mode

– ...

OSEK Application modes primitive

AppModeType GetActiveApplicationMode(void)

– gets the current application mode

OSDEFAULTAPPMODE

– a default application mode value always defined

void StartOS(AppModeType <Mode>)

– starts the operating system

void ShutdownOS(StatusType <Error>)

– shuts down the operating system (e.g., a critical error occurred)

Hooks

• OSEK OS specifies a set of hooks that are called at
specific times

– StartupHook
when the system starts

Hooks (2)

– PreTaskHook
before a task is scheduled

– PostTaskHook
after a task has finished its slice

– ShutdownHook
when the system is shutting down (usually because of an
unrecoverable error)

– ErrorHook
when a primitive returns an error

Error handling

• the OSEK OS has two types or error return values

– standard error
(only errors related to the runtime behavior are returned)

– extended error
(more errors are returned, useful when debugging)

• the user has two ways of handling these errors

– distributed error checking
the user checks the return value of each primitive

– centralized error checking
the user provides a ErrorHook that is called whenever an error
condition occurs

OSEK OIL

• goal

– provide a mechanism to configure an OSEK application inside
a particular CPU (for each CPU there is one OIL description)

• the OIL language

– allows the user to define objects with properties
(e.g., a task that has a priority)

– some object and properties have a behavior specified by the
standard

• an OIL file is divided in two parts

– an implementation definition
defines the objects that are present and their properties

– an application definition
define the instances of the available objects for a given
application

OSEK OIL objects

• The OIL specification defines the properties of the
following objects:

– CPU
the CPU on which the application runs

– OS
the OSEK OS which runs on the CPU

– ISR
interrupt service routines supported by OS

– RESOURCE
resources that can be used by a task

– TASK
tasks handled by the OS

– COUNTER
the counter represents hardware/software tick source for
alarms.

OSEK OIL objects (2)

– EVENT
the event owned by a task.

– ALARM
the alarm is based on a counter

– MESSAGE
the COM message which provides local or network
communication

– COM
the communication subsystem

– NM
the network management subsystem

OIL example: implementation definition

OIL_VERSION = "2.4";

IMPLEMENTATION my_osek_kernel {

[...]

TASK {

BOOLEAN [

TRUE { APPMODE_TYPE APPMODE[]; },

FALSE

] AUTOSTART;

UINT32 PRIORITY;

UINT32 ACTIVATION = 1;

ENUM [NON, FULL] SCHEDULE;

EVENT_TYPE EVENT[];

RESOURCE_TYPE RESOURCE[];

/* my_osek_kernel specific values */

ENUM [

SHARED,

PRIVATE { UINT32 SIZE; }

] STACK;

};

[...]

};

OIL example: application definition

CPU my_application {

TASK Task1 {

PRIORITY = 0x01;

ACTIVATION = 1;

SCHEDULE = FULL;

AUTOSTART = TRUE;

STACK = SHARED;

};

};

I/O Management architecture

• the application calls I/O functions

• typical I/O functions are non-blocking

– OSEK BCC1/BCC2 does not have blocking primitives

• blocking primitives can be implemented

– with OSEK ECC1/ECC2

– not straightforward

• the driver can use

– polling

• typically used for low bandwidth, fast interfaces

• typically non-blocking

• typically independent from the RTOS

I/O Management architecture (2)

– interrupts

• there are a lot of interrupts in the system

• interrupts nesting often enabled

• most of the interrupts are ISR1 (independent from the RTOS)

because of runtime efficiency

• one ISR2 that handles the notifications to the application

– DMA

• typically used for high-bandwidth devices

(e.g., transfers from memory to device

I/O Management: using ISR2

ISR1

Library API

Application callback

global

data

I/O Driver

ISR2

I/O Management architecture (3)

• another option is to use the ISR2 to wake up a driver
task

• the driver task will be scheduled by the RTOS
together with the other application tasks

I/O Management architecture

ISR1

Library API

Application callback

global

data

ISR2

I/O Driver

I/O Tasks

OSEK Standard and experiments on microcontroller

devices

Paolo Gai

Evidence Srl

pj@evidence.eu.com

summary

• the hardware

• example 1 – ISR2 and tasks

• example 2 – application modes and resources

• example 3 – events, alarms, ErrorHook, ORTI

the hardware

• the evaluation board used is a FLEX board (Light or
Full) with a Demo Daughter board

• during the examples, we’ll use the following devices:

– the DSPIC MCU

– 1 timer

– a button

• used to generate interrupts when pressed or released

• also used as external input

– leds

– 16x2 LCD

Example 1 – Tasks and ISR2

• The demo shows the usage of the following
primitives:

DeclareTask – ActivateTask – TerminateTask -
Schedule

• Demo structure

– The demo is consists of two tasks, Task1 and Task2.

– Task1 repeatedly puts on and off a sequence of LEDs

– Task2 simply turns on and off a LED, and is activated by
pressing a button. Task2 depending on the configuration
parameters, may preempt Task1

Ex. 1 Configuration 1: Full preemptive

• This configuration is characterized by the following
properties:

– periodic interrupt � Task1 activation � LED 0 to 5 blink

– button � Task2 activation � Task2 always preempts Task1,
blinks LED 6/7 and prints a message

Notes:

• Task2 is automatically activated by StartOS

– AUTOSTART=TRUE

• Conformance Class is BCC1

– lost activations if the button pressed too fast!

Ex. 1 Configuration 2: Non preemptive

• Task1 is NON preemptive

• Task2 runs only when Task1 does not run

– LEDs 6 and 7 does not interrupt the ChristmasTree

• IRQs are not lost, but task activations may be

Ex. 1 Configuration 3: Preemption points

• Task1 calls Schedule in the middle of the Christmas
tree

• Result:

– Task2 can now preempt Task1 in the middle of the
Christmas tree

Ex. 4 Configuration 4: Multiple Activations.

• BCC2 Conformance class

• Task2 can now store pending activations, which are

executed whenever possible

Example 2 - Resources and App. modes

• The demo shows the usage of the following
primitives:

GetActiveApplicationMode, GetResource,
ReleaseResource

• Demo structure

– Two tasks, LowTask and HighTask sharing a resource.

– LowTask is a periodic low priority task, activated by a timer,
with a long execution time.

– Almost all its execution time is spent inside a critical section.
LED 0 is turned on when LowTask is inside the critical
section.

– HighTask is a high priority task that increments (decrements)
a counter depending on the application mode being
ModeIncrement (ModeDecrement). The task is aperiodic,
and is activated by the ISR linked to the button.

Example 2 - Resources and App. modes (2)

– Application Modes are used to implement a task behavior
dependent on a startup condition

– (ERIKA specific) HighTask and LowTask are configured to
share the same stack by setting the following line inside the
OIL task properties:

STACK = SHARED;

Example 3 - Event and Alarm API Example

• The demo shows the usage of the following
primitives:

WaitEvent, Getevent, ClearEvent, SetEvent,
ErrorHook, StartupHook, SetRelAlarm, CounterTick

• Demo structure:

– The demo consists of two tasks, Task1 and Task2.

– Task1 is an extended task. Extended tasks are tasks that:

• can call blocking primitives (WaitEvent)

• must have a separate stack

– A task is considered an Extended Task when the OIL file
includes events inside the task properties.

– Task1 waits for two events:

• Timer � CounterTick � AlarmTask1 � TimerEvent � LED 1

• Button IRQ � SetEvent(ButtonEvent) � LED 2

Example 3 - Event and Alarm API Example (2)

– Button press � ISR2 �SetRelAlarm(AlarmTask2) � Task2
activation � LED 3 on.

– ErrorHook � when the button is pressed rapidly twice

• SetRelAlarm primitive called by the Button IRQ on an already

armed alarm

– The alarm support is basically a wakeup mechanism that
can be attached to application or external events (such as
timer interrupts) by calling CounterTick to implement an
asynchronous notification.

– (ERIKA Enterprise specific) Task1 needs a separate stack
because it uses WaitEvent.

Example 3 - Event and Alarm API Example (3)

• Running the example

– Timer Interrupt � Counter1 incremented.

– AlarmTask1 � TimerEvent event set on Task1 � Task1
wakes up, get the event, and blinks LED 1.

– The visible result is that LED 1 periodically blinks on the
board.

– button press � Task1 runs and LED 3 goes on and off

– rapid button press � ErrorHook due to multiple calls of
SetRelAlarm

– ORTI Informations are available for this demo

Examples
CPU test_application {

OS EE {

CFLAGS = "-DALT_DEBUG -O0 -g";

CFLAGS = "-Wall";

ASFLAGS = "-g";

LDFLAGS = "-Wl,-Map -Wl,project.map";

LDDEPS = "\\";

LIBS = "-lm";

NIOS2_SYS_CONFIG = "Debug";

NIOS2_APP_CONFIG = "Debug";

NIOS2_DO_MAKE_OBJDUMP = TRUE;

NIOS2_JAM_FILE =
"C:/altera/81/nios2eds/examples/verilog/niosII_stratixII_2s60_RoHS/frsh_small/fpga.jam";

NIOS2_PTF_FILE =
"C:/altera/81/nios2eds/examples/verilog/niosII_stratixII_2s60_RoHS/frsh_small/NiosII_stratixII_2s60_RoHS_
small_sopc.ptf";

CPU_DATA = NIOSII {

MULTI_STACK = FALSE;

STACK_TOP = "__alt_stack_pointer";

SYS_SIZE = 0x1000;

SYSTEM_LIBRARY_NAME = "frsh_small_syslib";

SYSTEM_LIBRARY_PATH = "/cygdrive/c/Users/Marco/workspaceFRSH81/frsh_small_syslib";

APP_SRC = "code.c";

};

STATUS = EXTENDED;

STARTUPHOOK = FALSE;

ERRORHOOK = FALSE;

SHUTDOWNHOOK = FALSE;

PRETASKHOOK = FALSE;

POSTTASKHOOK = FALSE;

USEGETSERVICEID = FALSE;

USEPARAMETERACCESS = FALSE;

USERESSCHEDULER = FALSE;

// ORTI_SECTIONS = ALL;

};

Examples

/* this is the OIL part for the task displaying the christmas tree */

TASK Task1 {

PRIORITY = 0x01; /* Low priority */

AUTOSTART = FALSE;

STACK = SHARED;

ACTIVATION = 1; /* only one pending activation */

};

/* this is the OIL part for the task activated by the button press */

TASK Task2 {

PRIORITY = 0x02; /* High priority */

SCHEDULE = FULL;

AUTOSTART = TRUE;

STACK = SHARED;

};

/* CONFIGURATION 1:

* Kernel is BCC1

* Task 1 is full preemptive

*/

OS EE { KERNEL_TYPE = BCC1; };

TASK Task1 { SCHEDULE = FULL; };

TASK Task2 { ACTIVATION = 1; };

Examples

/* A few counters incremented at each event

* (alarm, button press or task activation...)

*/

volatile int timer_fired=0;

volatile int button_fired=0;

volatile int task2_fired=0;

/* Let's remember the led status!

* Mutual exclusion on this variable is not included in the demo to make it

* not too complicated; in general shared variables should be protected using

* GetResource/ReleaseResource calls

*/

volatile int led_status = 0;

/* Let's declare the tasks identifiers */

DeclareTask(Task1);

DeclareTask(Task2);

/* just a dummy delay */

#define ONEMILLION 1000000

static void mydelay(void)

{

int i;

for (i=0; i<ONEMILLION/2; i++);

}

Examples

/* sets and resets a led configuration passed as parameter, leaving the other

* bits unchanged

*

* Note: led_blink is called both from Task1 and Task2. To avoid race

* conditions, we forced the atomicity of the led manipulation using IRQ

* enabling/disabling. We did not use Resources in this case because the

* critical section is -really- small. An example of critical section using

* resources can be found in the osek_resource example.

*/

void led_blink(int theled)

{

alt_irq_context c;

c = alt_irq_disable_all();

led_status |= theled;

IOWR_ALTERA_AVALON_PIO_DATA(LED_PIO_BASE, led_status);

alt_irq_enable_all(c);

mydelay();

c = alt_irq_disable_all();

led_status &= ~theled;

IOWR_ALTERA_AVALON_PIO_DATA(LED_PIO_BASE, led_status);

alt_irq_enable_all(c);

}

Examples

/* This alarm callback is attached to the system timer, and is used to

* activate Task1

* The period in expressed in system timer ticks, each one typically 10ms

*/

#define TASK1_TIMER_INTERVAL 400

alt_u32 Task1_alarm_callback (void* arg)

{

/* Count the number of alarm expirations */

timer_fired++;

ActivateTask(Task1);

return TASK1_TIMER_INTERVAL;

}

Examples

/* Task1: just call the ChristmasTree */

TASK(Task1)

{

/* First half of the christmas tree */

led_blink(0x01);

led_blink(0x02);

led_blink(0x04);

/* CONFIGURATION 3 and 4: we put an additional Schedule() here! */

#ifdef MYSCHEDULE

Schedule();

#endif

/* Second half of the christmas tree */

led_blink(0x08);

led_blink(0x10);

led_blink(0x20);

TerminateTask();

}

Examples

/* Task2: Print the counters on the JTAG UART */

TASK(Task2)

{

static int which_led = 0;

/* count the number of Task2 activations */

task2_fired++;

/* let blink leds 6 or 7 */

if (which_led) {

led_blink(0x80);

which_led = 0;

}

else {

led_blink(0x40);

which_led = 1;

}

/* prints a report

* Note: after the first printf in main(), then only this task uses printf

* In this way we avoid raceconditions in the usage of stdout.

*/

printf("Task2 - Timer: %3d Button: %3d Task2: %3d\n", timer_fired,
button_fired, task2_fired);

TerminateTask();

}

Examples

/*

* Handle button_pio interrupts activates Task2.

*/

static void handle_button_interrupts(void* context, alt_u32 id)

{

/* Reset the Button's edge capture register. */

IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0);

/* count the number of button presses */

button_fired++;

ActivateTask(Task2);

}

/* Initialize the button_pio. */

static void init_button_pio()

{

/* Enable the first two 2 button interrupts. */

IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0x3);

/* Reset the edge capture register. */

IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0x0);

/* Register the interrupt handler. */

alt_irq_register(BUTTON_PIO_IRQ, NULL, handle_button_interrupts);

}

Examples

int main()

{

alt_alarm myalarm;

/* set the stack space to a known pattern, to allow stack statistics by

* Lauterbach Trace32 */

EE_trace32_stack_init();

printf("Welcome to the ERIKA Enterprise Christmas Tree!\n\n");

/* let's start the multiprogramming environment...*/

StartOS(OSDEFAULTAPPMODE);

/* program the Button PIO */

init_button_pio();

/* start the periodic timers */

alt_alarm_start (&myalarm, TASK1_TIMER_INTERVAL,

Task1_alarm_callback, NULL);

/* now the background activities: in this case, we do nothing. */

for (;;);

return 0;

}

Examples (OIL variations)

/* CONFIGURATION 2:

* Same as Configuration 1, BUT Task 1 is NON preemptive

*/

OS EE { KERNEL_TYPE = BCC1; };

TASK Task1 { SCHEDULE = NON; };

TASK Task2 { ACTIVATION = 1; };

/* CONFIGURATION 3:

* Same as Configuration 2, BUT the code is compiled with an additional #define

* that controls the presence of the Schedule() function inside Task1

*

* The additional define is added with the EEOPT = "..."; statement inside

* the OS object.

*/

OS EE { EE_OPT = "MYSCHEDULE"; KERNEL_TYPE = BCC1; };

TASK Task1 { SCHEDULE = NON; };

TASK Task2 { ACTIVATION = 1; };

Examples (OIL variations)

/* CONFIGURATION 4:

* Same as Configuration 3, BUT Task2 supports three pending activations.

* The kernel type has to be BCC2 to support more than one pending
activation!

*

* Note: This configuration does not work with the Demo version

* (which includes only a BCC1 kernel)

*/

// OS EE { EE_OPT = "MYSCHEDULE"; KERNEL_TYPE = BCC2; };

// TASK Task1 { SCHEDULE = NON; };

// TASK Task2 { ACTIVATION = 6; };

/* --- */

/* CONFIGURATION 5:

* Kernel is FP

* Task 1 is full preemptive

*/

// OS EE { KERNEL_TYPE = FP { NESTED_IRQ = TRUE; }; };

// TASK Task1 { SCHEDULE = FULL; };

// TASK Task2 { ACTIVATION = 1; };

};

Examples (ORTI) Declaration – types

VERSION {

KOIL = "2.1";

OSSEMANTICS = "ORTI", "2.1";

};

IMPLEMENTATION EE_cpu_0 {

OS {

/* here for each task a small description and its index */

ENUM [

"NO_TASK" = "-1",

"Task1" = 0,

"Task2" = 1

] RUNNINGTASK, "Running Task Id";

ENUM "int" [

"Not Running (0)" = 0,

"0x1" = 0x1,

"0x2" = 0x2

] RUNNINGTASKPRIORITY, "Priority of Running Task";

TOTRACE ENUM "unsigned char" [

"ActivateTask" = 2,

"TerminateTask" = 4,

"ChainTask" = 6,

...

] SERVICETRACE, "OS Services Watch";

Examples (ORTI) Information section

OS EE_arch {

RUNNINGTASK = "EE_stkfirst";

RUNNINGTASKPRIORITY = "(EE_stkfirst == -1) ? 0 :
EE_ORTI_th_priority[EE_stkfirst]";

SERVICETRACE = "EE_ORTI_servicetrace";

LASTERROR = "EE_ORTI_lasterror";

CURRENTAPPMODE = "EE_ApplicationMode";

vs_EE_SYSCEILING = "EE_sys_ceiling";

};

/* Tasks */

TASK Task1 {

PRIORITY = "(EE_ORTI_th_priority[0])";

STATE = "(EE_th_status[0])";

CURRENTACTIVATIONS = "(1 - EE_th_rnact[0])"; /* 1 = max activations */

STACK = "(EE_hal_thread_tos[1])";

};

TASK Task2 {

PRIORITY = "(EE_ORTI_th_priority[1])";

STATE = "(EE_th_status[1])";

CURRENTACTIVATIONS = "(1 - EE_th_rnact[1])"; /* 1 = max activations */

STACK = "(EE_hal_thread_tos[0])";

};

Examples (ORTI) Information section

/* Stacks */

STACK Stack0 {

SIZE = "2560";

STACKDIRECTION = "DOWN";

BASEADDRESS = "(unsigned int *)((unsigned int
*)((int)(&__alt_stack_pointer) - 0xA00))";

FILLPATTERN = "0xA5A5A5A5";

};

/* Alarms */

ALARM AlarmTask1 {

ALARMTIME = "EE_ORTI_alarmtime[0]";

CYCLETIME = "EE_alarm_RAM[0].cycle";

STATE = "(EE_alarm_RAM[0].used == 0) ? 0 : 1";

ACTION = "set TimerEvent on Task1";

COUNTER = "Counter1";

COUNTERVALUE = "EE_counter_RAM[EE_alarm_ROM[0].c].value";

};

...

/* Resources */

RESOURCE RES_SCHEDULER {

STATE = "(EE_resource_locked[0])";

LOCKER = "(EE_resource_locked[0] ? EE_ORTI_res_locker[0] : -1)";

PRIORITY = "2";

};

That’s all folks !

• Please ask your questions
...

