Development of Building Automation and Control (BAC) Systems:

Modeling and Controller Design (A Platform-Based Design Approach)

Mehdi Maasoumy PhD Candidate, UC Berkeley 11/15/2012

Outline

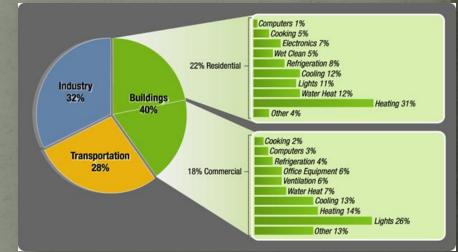
- Motivation
- Thermal Modeling
 - First approach (Physical Buildings)
 - Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Comparing Different Control Strategies
- Co-design of Control Algorithm and Embedded Platform
 Buildings and Smart Grid

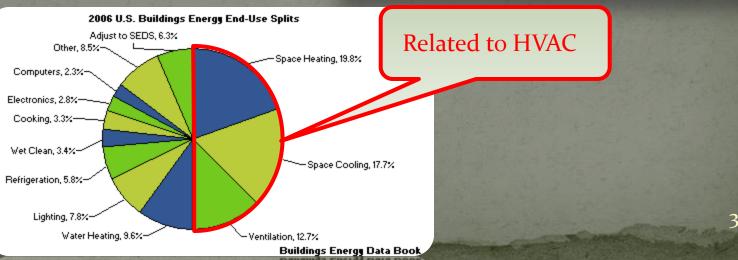
Motivation

Buildings Consume Significant Energy

- 40% of total US energy consumption
- 72% of total US electricity consumption
- 55% of total US natural gas consumption
- Total US annual energy cost \$ 370 Billion
- Increase in US electricity cons. since 1990: 200%

Source: Buildings Energy Data Book 2007





Smart vs. Green Buildings

THE COMMONALITY OF SMART AND GREEN BUILDINGS

GREEN BUILDINGS

Sustainable Sites Water Efficiency

Energy and Atmosphere

Materials and Resources

Indoor Environmental Quality

Innovation and Design Process Optimize Energy Performance Additional Commissioning Measurement and Verification Carbon Dioxide (CO₂) Monitoring Controllability of Systems Permanent Monitoring Systems Innovation in Design

Data Network VOIP Video Distribution A/V Systems Video Surveillance Access Control **HVAC Control** Power Management Programmable **Lighting Control** Facilities Management Cabling Infrastructure Wireless Systems

SMART BUILDINGS

Source: http://www.smart-buildings.com

Smart Buildings

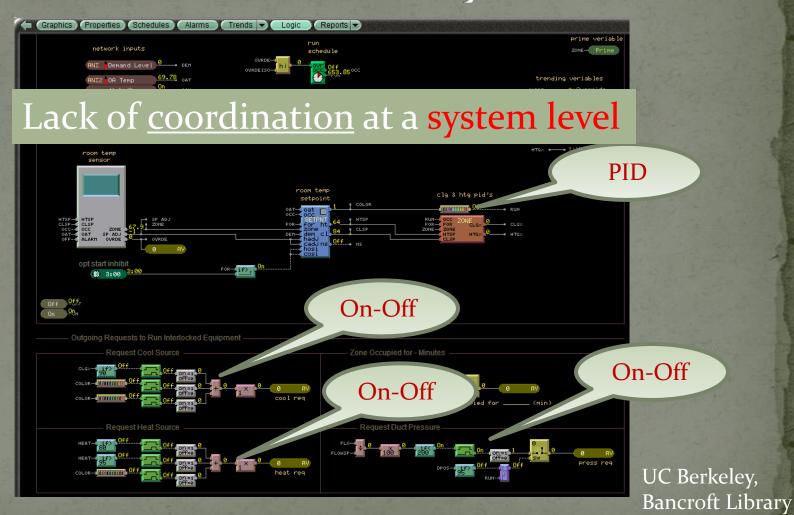
 First mention of Smart buildings: 25 years ago upon advent of PC and deregulation of tele-communication industry, and advances in building automation

Building Automation Tele-Communication

Smart Buildings

Smart buildings idea: ... get more functionality out of system when integrated and tied to each other

Current HVAC Control Systems



6

Observations

Control logic governing today's buildings uses simple control schemes dealing with one subsystem at a time...

• Local actions are determined <u>without</u> taking into account the interrelations among:

- Outdoor weather conditions
- Indoor air quality
- Cooling demands
- HVAC process components

Outline

Motivation

Thermal Modeling

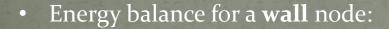
- First approach (Physical Buildings)
- Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Comparing Different Control Strategies
- Co-design of Control Algorithm and Embedded Platform
 Buildings and Smart Grid

First approach

For physical buildings

Modeling
Parameter estimation
Unmodeled dynamics estimation
Model-based Control

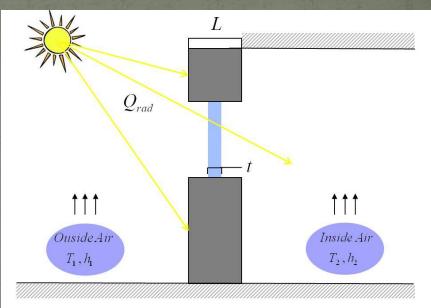
Modeling

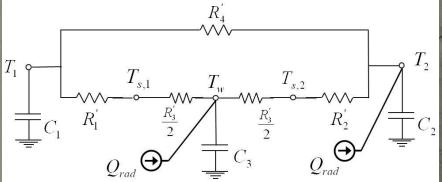


$$\frac{dT_{w_i}}{dt} = \frac{1}{C_{w_i}} \left[\sum_{j \in \mathcal{N}_{w_i}} \frac{T_j - T_{w_i}}{R'_{ij}} + r_i \alpha_i A_i q''_{rad_i} \right]$$

 $r_i = \begin{cases} 0 & \text{internal wall} \\ 1 & \text{peripheral wall} \end{cases}$

• Energy balance for a **room** node:

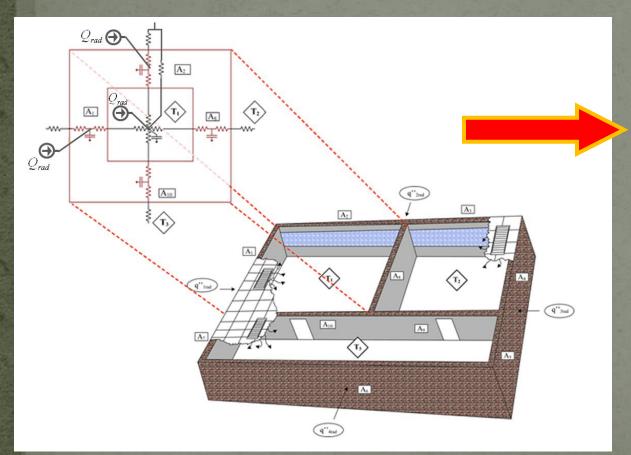




Thermal and circuit model of a wall with window

$$\frac{dT_{r_i}}{dt} = \frac{1}{C_{r_i}} \left[\sum_{j \in \mathcal{N}_{r_i}} \frac{T_j - T_{r_i}}{R'_{ij}} + \frac{\dot{m}_{r_i} c_p (T_{s_i} - T_{r_i})}{R'_{ij}} + w_i \tau_{win_i} A_{win_i} q''_{rad_i} + \dot{q}_{int} \right]$$

Building Thermal Model



More details at: Maasoumy et al. DSCC 2011.

 $q_{rad_i}^{\prime\prime}\,\dot{q}_{int}$

 $\dot{x}(t) = Ax(t) + Bu(t) + d(t)$

y(t) = Cx(t)

Parameterizing Unmodeled Dynamics

External heat gain

$$q_{rad_i}''(t) = \lambda T_{out}(t) + \gamma$$

Note: other quantities such as **global horizontal irradiance** (GHI) data can be used here as well.

Internal heat gain

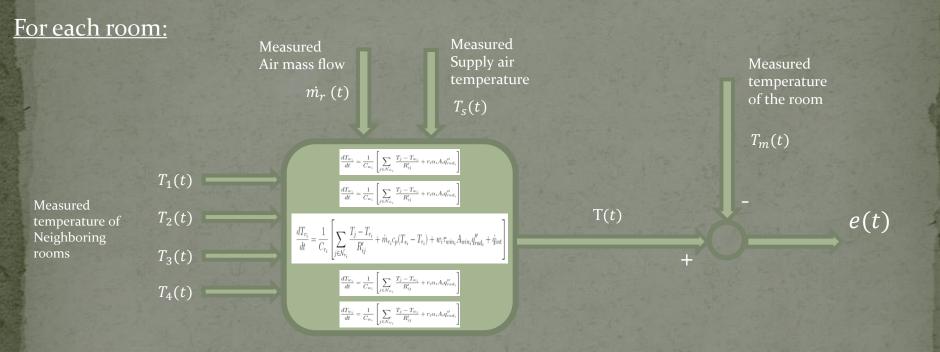
$$\dot{q}_{int}(t) = \mu \Psi(t) + \nu$$

 $\Psi(t)$ is the CO_2 concentration in the room in (ppm).

Parameter Identification

$$\min_{\substack{C_{[.]}, R_{[.]}, \lambda, \gamma, \mu, \nu}} \|Y^m - Y^s\|_2^2$$
s.t.
$$\begin{cases} x_{t+1}^s = Ax_t^s + f(x_t^s, u_t^m, d_t^m) & t = 0, ..., N-1 \\ y_t^s = Cx_t^s & t = 0, ..., N \end{cases}$$

Parameter Identification



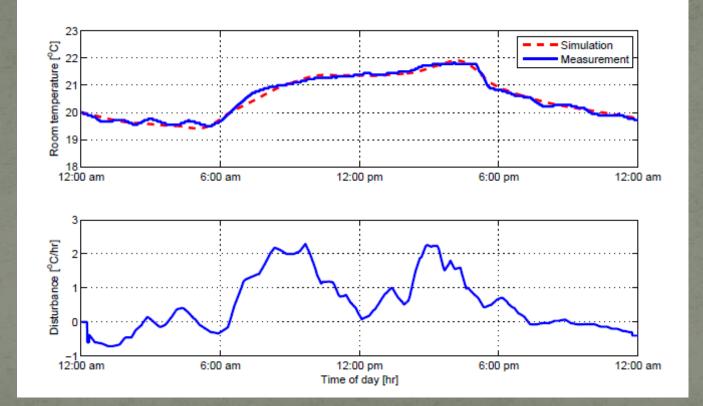
 $T(t) = f(C_r, C_{w1}, C_{w2}, C_{w3}, C_{w4}, R_1, R_2, R_3, R_4)$

 $[C_r, C_{w1}, C_{w2}, C_{w3}, C_{w4}, R_1, R_2, R_3, R_4]^* = \arg\min_{C_r, C_{wi}, R_i} \sum_{t} [e(t)]^2$

Unmodeled Dynamics Estimation

• Initial guess (ASHRAE Handbook)

Data of UC BerkeleyBancroft library, Conference room



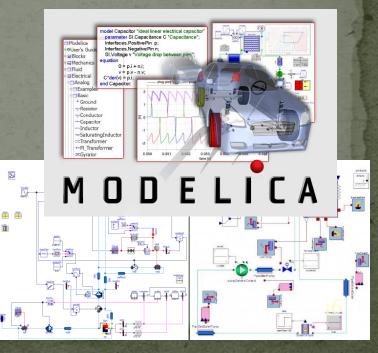
More details at: Maasoumy et al., IEEE D&T, SI on Green Buildings, July/Aug 2012

Second approach

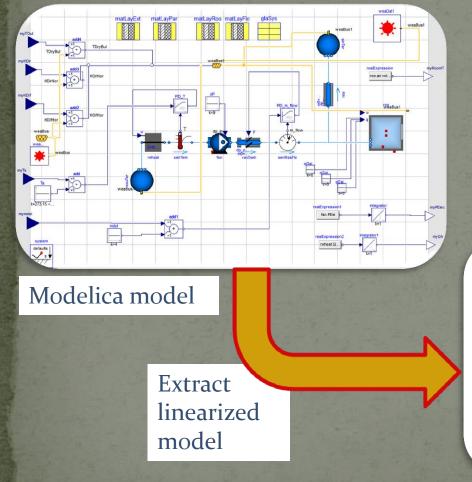
For simulation models

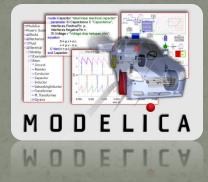
• Family of linear systems:

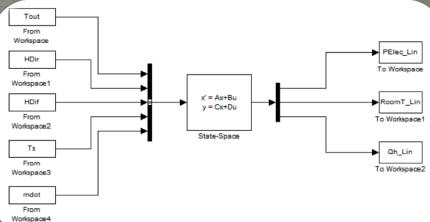
Linearized models at each operating point Obtain adequate number of models for a given tolerance Balanced realization Model order reduction



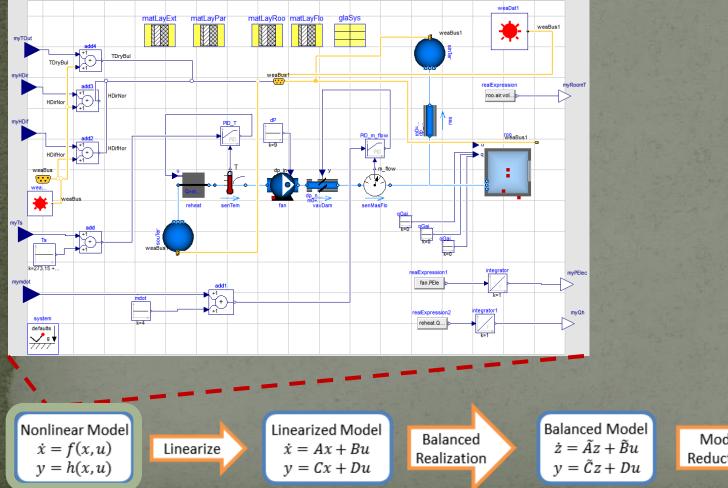
Family of linear systems





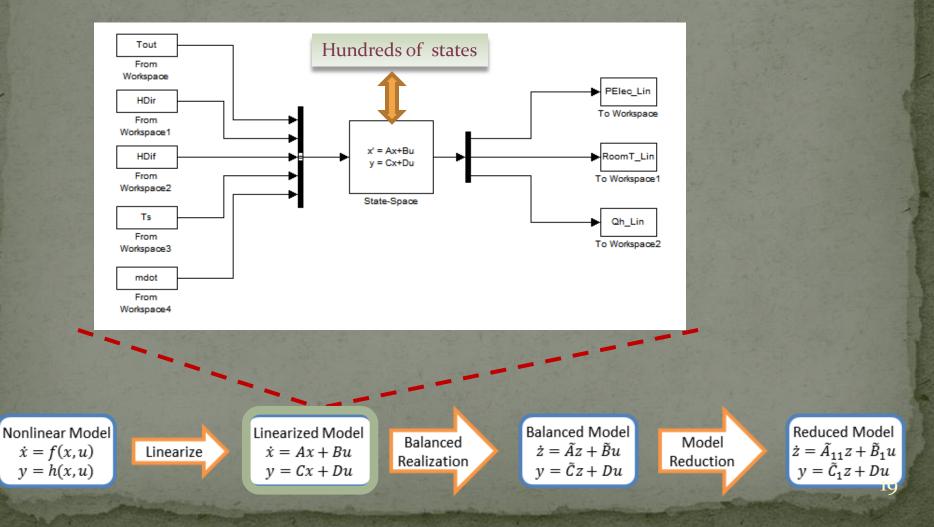


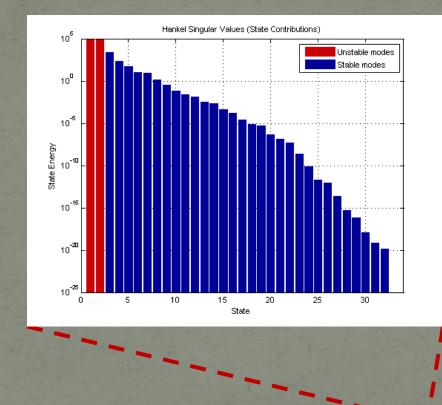
Simulink model



Model Reduction

Reduced Model $\dot{z} = \tilde{A}_{11}z + \tilde{B}_1u$ $y = \tilde{C}_1 z + D u$





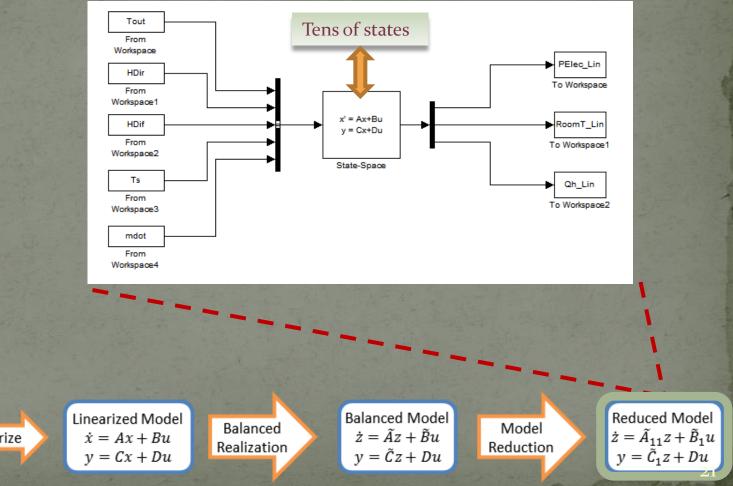
Hankel singular values: Relative amount of energy per state

Nonlinear Model $\dot{x} = f(x, u)$ y = h(x, u)

Linearize

Linearized Model $\dot{x} = Ax + Bu$ y = Cx + DuBalanced Realization Balanced Model $\dot{z} = \tilde{A}z + \tilde{B}u$ $y = \tilde{C}z + Du$

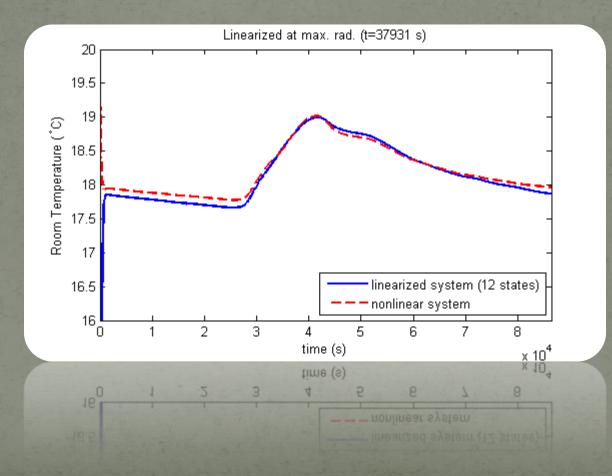
Model Reduction Reduced Model $\dot{z} = \tilde{A}_{11}z + \tilde{B}_1u$ $y = \tilde{C}_1z + Du$



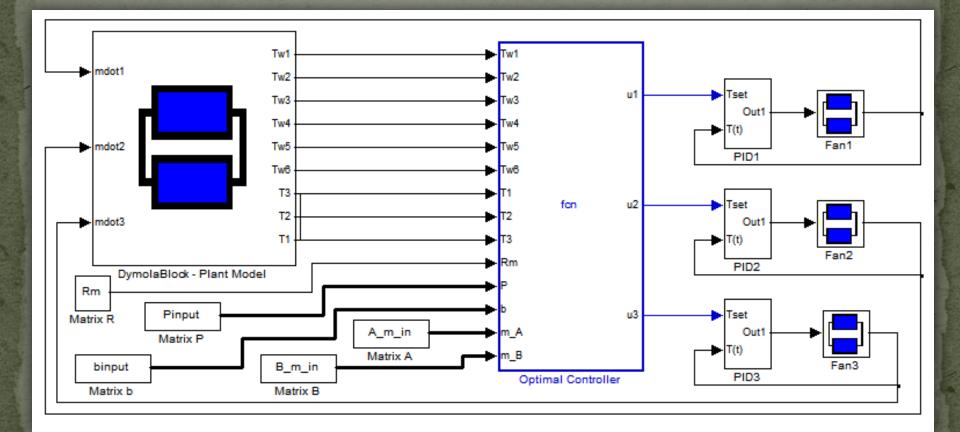
Nonlinear Model $\dot{x} = f(x, u)$ y = h(x, u)

Linearize

Reduced Model



Heterogeneous Modeling and Control



Outline

Motivation

Thermal Modeling

- First approach (Physical Buildings)
- Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC

Comparing Different Control Strategies

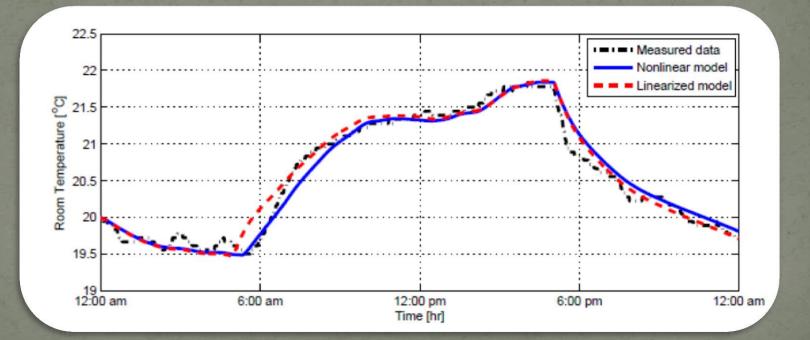
Co-design of Control Algorithm and Embedded Platform
Buildings and Smart Grid

Controller Design - Linearization

Find an operating point of the system

Find the closest equilibrium point

Linearize about the equilibrium point

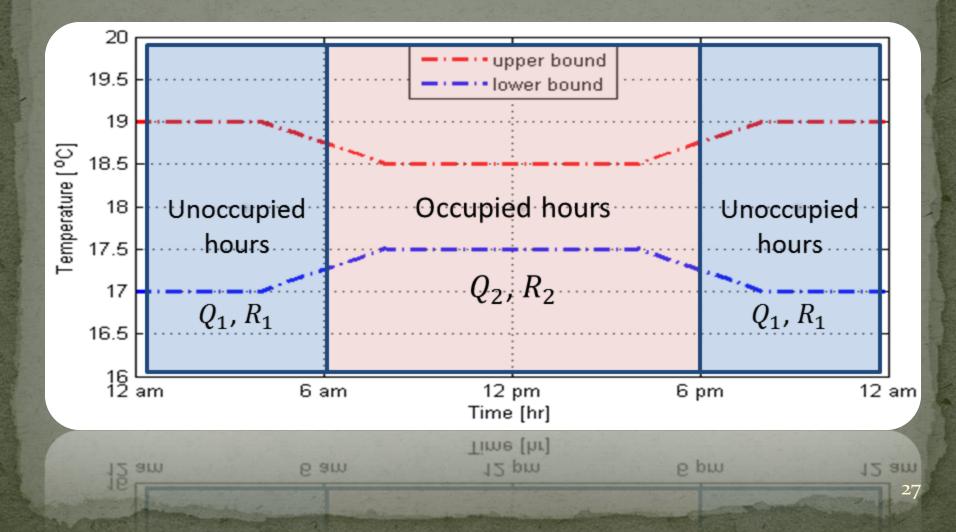


Model Predictive Control

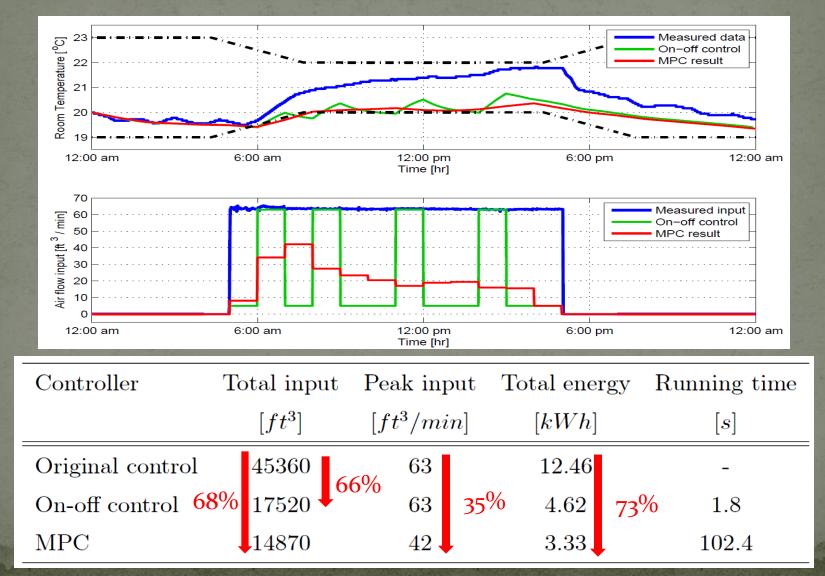
$$\begin{split} \min_{U_{t},\overline{\epsilon},\underline{\epsilon}} & \{|U_{t}|_{1} + \kappa |U_{t}|_{\infty} + \rho(|\overline{\epsilon}_{t}|_{1} + |\underline{\epsilon}_{t}|_{1})\} = \\ \min_{U_{t},\overline{\epsilon},\underline{\epsilon}} & \{\sum_{k=0}^{N-1} |u_{t+k|t}| + \kappa \max(|u_{t|t}|, \cdots, |u_{t+N-1|t}|) + \rho \sum_{k=1}^{N} (|\overline{\epsilon}_{t+k|t}| + |\underline{\epsilon}_{t+k|t}|)\} \\ \text{s.t.} & x_{t+k+1|t} = Ax_{t+k|t} + Bu_{t+k|t} + Ed_{t+k|t}, \quad k = 0, \dots, N-1 \\ & y_{t+k|t} = Cx_{t+k|t}, \quad k = 1, \dots, N \\ & 0 \le u_{t+k|t} \le \overline{U}, \quad k = 1, \dots, N \\ & 0 \le u_{t+k|t} \le \overline{U}, \quad k = 1, \dots, N \\ & \underline{\tau}_{t+k|t} - \underline{\epsilon}_{t+k|t} \le y_{t+k|t} \le \overline{T}_{t+k|t} + \overline{\epsilon}_{t+k|t}, \quad k = 1, \dots, N \\ & \underline{\epsilon}_{t+k|t}, \overline{\epsilon}_{t+k|t} \ge 0, \quad k = 1, \dots, N \end{split}$$

26

Comfort Zone Definition



"MPC" and "On-off" Control Results



28

Outline

Motivation

Thermal Modeling

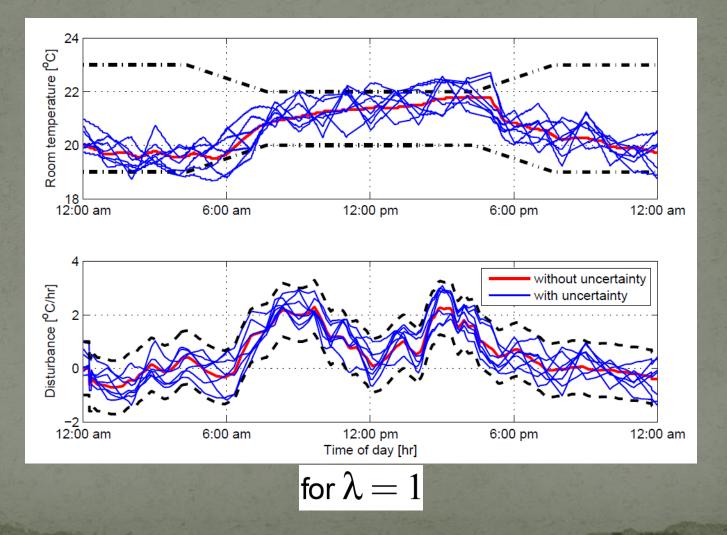
- First approach (Physical Buildings)
- Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC

Comparing Different Control Strategies

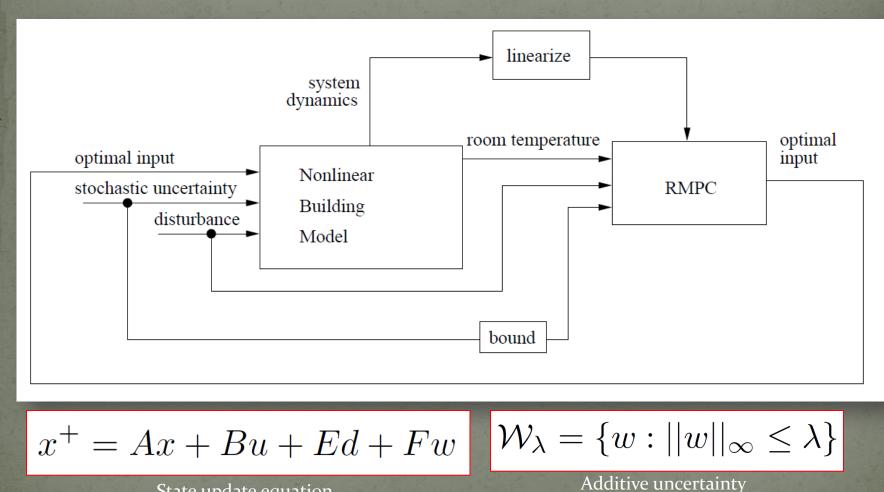
Co-design of Control Algorithm and Embedded Platform
 Buildings and Smart Grid

Robust Model Predictive Control (against model and measurement uncertainties)

Original Control with Uncertainty



Schematic of RMPC Implementation



State update equation

More details at: Maasoumy, et al. DSCC 2012

Min-Max Strategy (Open-Loop) for RMPC

$$J_{0}(x(t), U_{t}) \triangleq$$

$$\max_{w_{[.]}} \{\sum_{k=0}^{N-1} |u_{t+k|t}| + \kappa \max(|u_{t|t}|, \cdots, |u_{t+N-1|t}|) + \rho\sum_{k=1}^{N} (|\overline{c}_{t+k|t}| + |\underline{c}_{t+k|t}|) \}$$
s.t. $x_{t+k+1|t} = Ax_{t+k|t} + Bu_{t+k|t} + Ed_{t+k|t} + Fw_{t+k|t}$

$$w_{t+k|t} \in \mathbb{W}$$

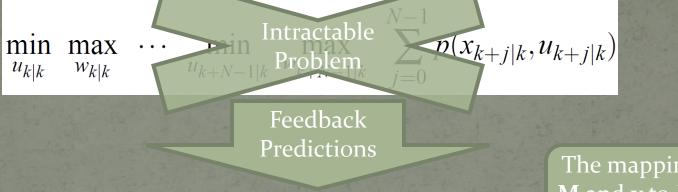
$$k = 0, \cdots, N-1$$

$$J_{0}^{*}(x(t)) \triangleq \min_{U_{t}} J_{0}(x(t), U_{t})$$
subject to
$$x_{t+k+1|t} = Ax_{t+k|t} + Bu_{t+k|t} + Fw_{t+k|t}$$

Robust counterpart of an uncertain optimization problem $\begin{aligned} x_{t+k+1|t} &= Ax_{t+k|t} + Du_{t+k|t} + Du_{t+k|t} + Tu_{t+k|t} + Tu_{t+k|t} \\ y_{t+k|t} &= Cx_{t+k|t} \\ \underline{T}_{t+k|t} - \underline{\varepsilon}_{t+k|t} \leq y_{t+k|t} \leq \overline{T}_{t+k|t} + \overline{\varepsilon}_{t+k|t} \\ \underline{\varepsilon}_{t+k|t}, \overline{\varepsilon}_{t+k|t} \geq 0 \\ \forall \ w_{t+k|t} \in \mathbb{W} \quad \forall \ k = 0, \cdots, N-1 \end{aligned}$

CL-RMPC: Feedback Predictions

• Closed-loop min-max problem:



- State feedback prediction:
- New decision variables:

$$U = \mathbf{M}X + \mathbf{v}$$

The mapping from **M** and **v** to X and Uis nonlinear!

$$\mathbf{v} = [v_{k|k}, v_{k+1|k}, \dots, v_{k+N-1|k}]$$

Parameter matrix **M** is *causal*:

in the sense that $u_{k+j|k}$ only depends on $x_{k+i|k}$, $i \leq j$.

• Sometimes **M** is incorporated as a **decision variable**...

Lower Triangular Structure (LTS)

Disturbance Feedback Policy:

parameterize <u>future inputs</u> as affine functions of <u>past disturbances.</u>

$$U = \mathbf{M}\mathbf{w} + \mathbf{v}$$
 i.e. $u_i := \sum_{j=0}^{i-1} m_{i,j}\omega_j + v_i$ $\forall i = 1, ..., N-1$

Where $M_{i,j} \in \mathbb{R}^{m \times p}$ and $v_i \in \mathbb{R}^m$.

$$\mathbf{M} := \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ m_{1,0} & 0 & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ m_{N-1,0} & \cdots & m_{N-1,N-2} & 0 \end{bmatrix}, \mathbf{v} := \begin{bmatrix} v_0 \\ \vdots \\ \vdots \\ v_{N-1} \end{bmatrix}$$

Drawback:

Main **problem** with the *min-max formulations* based on these parameterizations is:

the excessive number of <u>decision variables</u> and <u>constraints</u>

To resolve this issue

we study some other parameterizations

Toeplitz Structure

Lower Triangular Toeplitz (diagonal-constant) structure:

$U = \mathbf{M}\mathbf{w} + \mathbf{v}$

$$\mathbf{M} = \begin{pmatrix} k_1 & & & \\ k_2 & k_1 & & \\ k_3 & k_2 & k_1 & \\ \vdots & \ddots & \ddots & \\ k_{N-1} & \cdots & k_2 & k_1 \\ k_N & k_{N-1} & \cdots & k_2 & k_1 \end{pmatrix}$$

• was shown to deteriorate the performance of the CL-RMPC in our simulations!

Two Lower Diagonal Structure (TLDS)

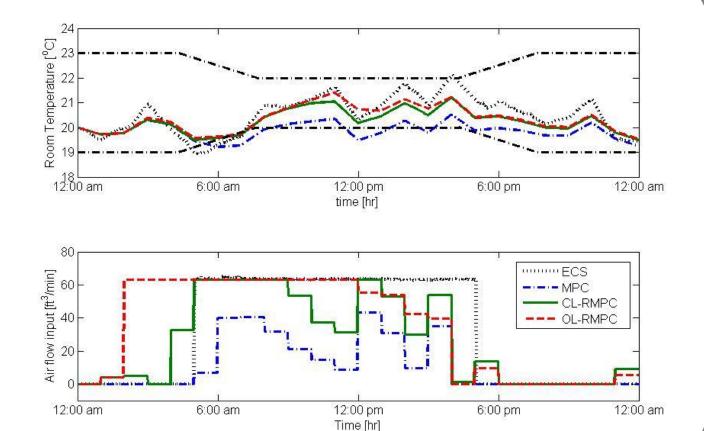
By analyzing the structure of the optimal matrix M, we observed:
the parameterization of the input need not consider feedback of more than past <u>two</u> values of w at each time.

$$u_{i} := m_{i,i-2}w_{i-2} + m_{i,i-1}w_{i-1} + v_{i}$$
$$= \sum_{j=i-2}^{i-1} m_{i,j}\omega_{j} + v_{i} \qquad \forall i = 1, \dots, N-1$$

we exploit the **sparsity** of the **M** matrix to enhance the <u>computational cost</u> of the optimization problem

 $\mathbf{M} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & 0 \\ m_{21} & 0 & 0 & \cdots & 0 & 0 \\ m_{31} & m_{32} & \ddots & \vdots & \vdots & \vdots \\ 0 & m_{42} & \ddots & 0 & \vdots & \vdots \\ \vdots & \ddots & \ddots & m_{1,2} & 0 & 0 \\ 0 & \cdots & 0 & m_{N,N-2} & m_{N,N-1} & 0 \end{bmatrix}$

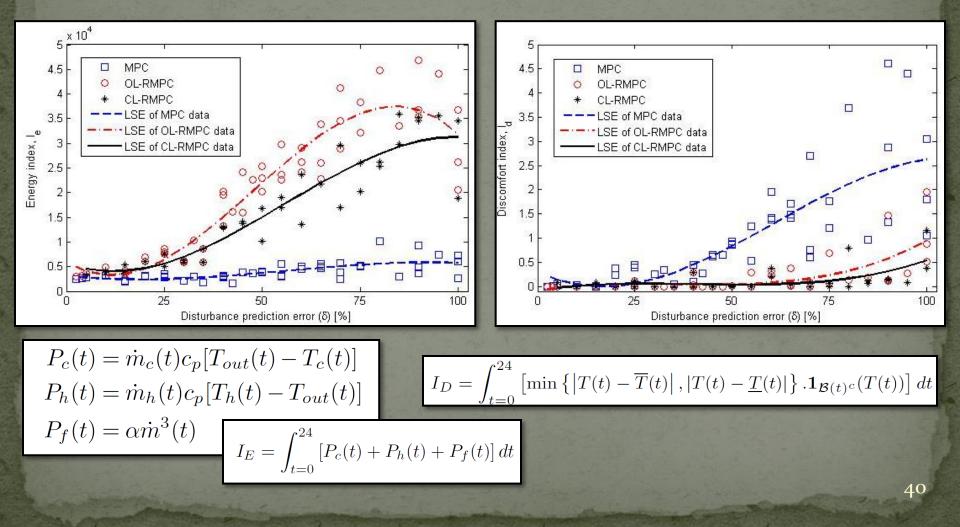
Simulation Results



Comparison of ECS, MPC, OL-RMPC and CL-RMPC

12.00 am

RMPC: Energy vs. Comfort



Simulation Results

Comparison of LTS and TLDS uncertainty feedback parameterizations and Open Loop min-max results for the case of $\delta = 50\%$.

		Number of	Average		
	Controller	feedback decision	simulation time	I_e	I_d
Closed-loop		variables	for $N = 24$ [s]	[kWh]	$[^{o}Ch]$
	LTS	$lmr(\frac{N(N+1)}{2})$	200	16467	0
	TLDS	3lmr(N-1)	138	16467	0
	OL	-	159	22592	0.84

Conclusion

• Presented a:

• MPC strategy that is *robust* against additive uncertainty.

Study the performance of two robust optimal control strategies, i.e.Open-loop (OL-RMPC)

- Closed-loop (CL-RMPC)
- Proposed (*TLDS*): a **new uncertainty feedback parameterization** for the CL-RMPC which results in:
 - Same **<u>energy</u>** and **<u>discomfort</u>** indices as *LTS*.
 - Fewer **decision variables**, (*linear in* N, as opposed to *quadratic* for *LTS*). Average **simulation time** of 30% less than LTS.

Outline

Motivation

Thermal Modeling

- First approach (Physical Buildings)
- Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPG
- Comparing Different Control Strategies
- Co-design of Control Algorithm and Embedded Platform
 Buildings and Smart Grid

Comparative Analysis of Different Model-Based Optimal <u>Controllers</u>

Problem Statement

Computation (and **Communication**) constraints

ask for ...

Faster Controllers!!!

Controllers

• P Control: fast, not optimal. (baseline)

 LQR: fast (closed form solution); NO hard constraints handling

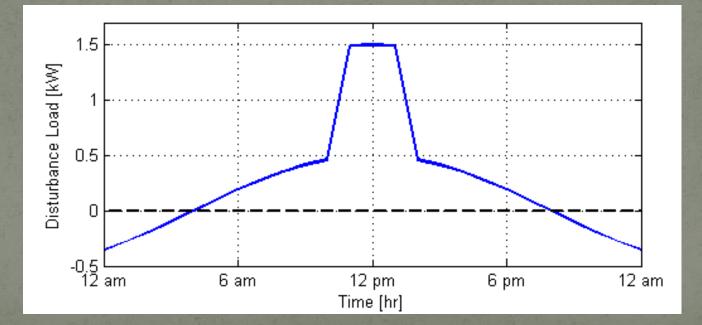
• AQR: fast (closed form solution); NO hard constraints handling; more accurate than LQR

• MPC: slower (online optimization problem solving); hard constraints handling

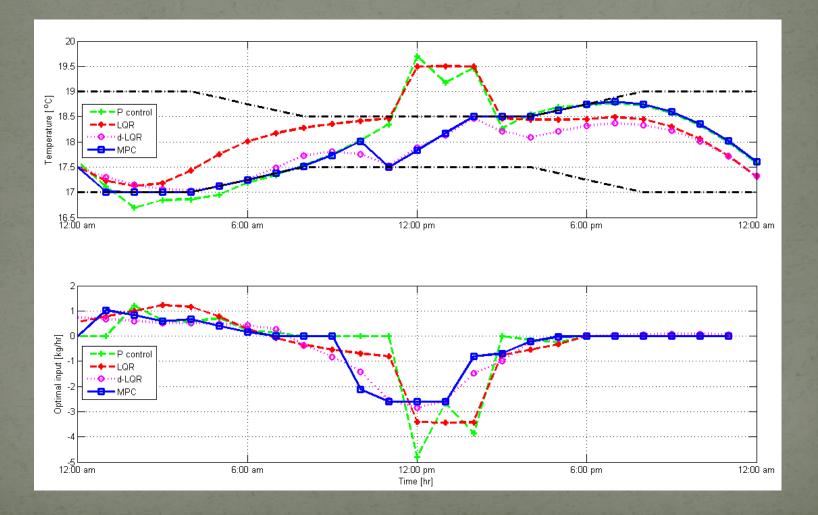
Disturbance Model

Assume:

- Meeting in the considered room from 11 am to 1 pm.
- The disturbance load would be like:



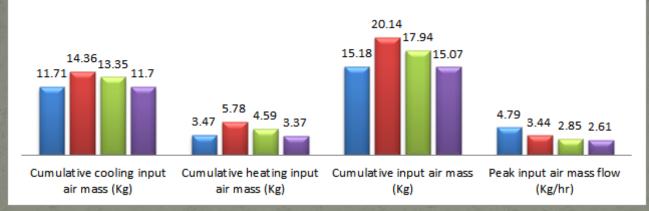
Comparative Analysis of controllers : LQR, d-LQR (AQR), MPC and P control



Performance Comparison

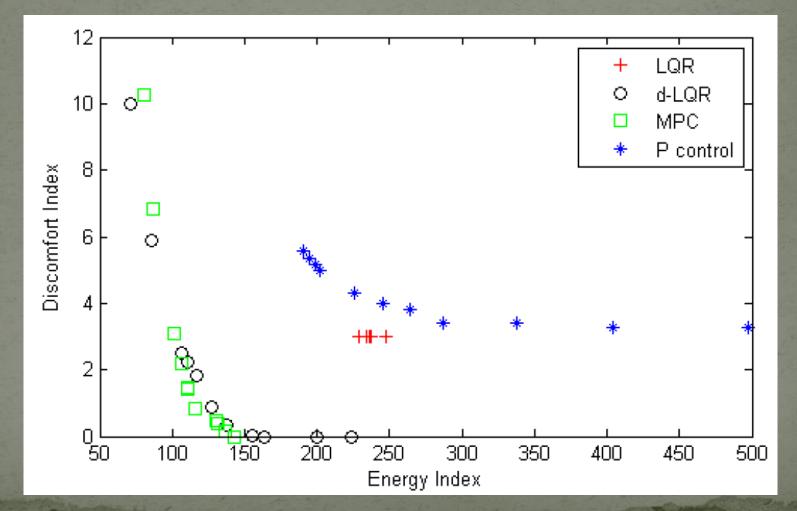
Performance compariosn for four controllers

P control LQR d-LQR MPC



Controller	Parameters	Simulation time $[s]$
P control	$K_p = 4$	0.187
LQR	$Q_1 = 0.01, \ Q_2 = 100$	0.057
	$R_1 = 10 \ R_2 = 0.02$	
d-LQR	$Q_1 = 0.24, \ Q_2 = 0.54$	0.009
	$R_1 = 1 \ R_2 = 0.09$	
MPC	$\kappa=2,\ \rho=1000$	95.098

Comfort vs. Cost



Outline

Motivation

Thermal Modeling

- First approach (Physical Buildings)
- Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC
- Comparing Different Control Strategies
- Co-design of Control Algorithm and Embedded Platform
 Buildings and Smart Grid

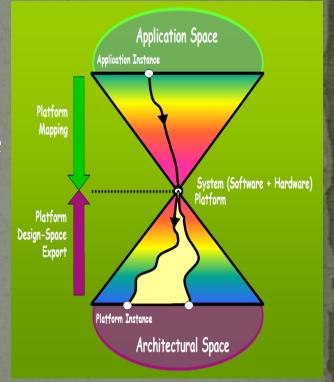
Co-design of Control Algorithm and Embedded Platform for HVAC Systems

Observations

The design of HVAC systems involves three main aspects:

Physical components and environment
Control algorithm that determines the system operations based on sensing inputs,
Embedded platform that implements

the control algorithm.



In the traditional *top-down approach*, the design of the HVAC control algorithm is done without explicit consideration of the embedded platform. NOT PLATFORM-BASED!!!

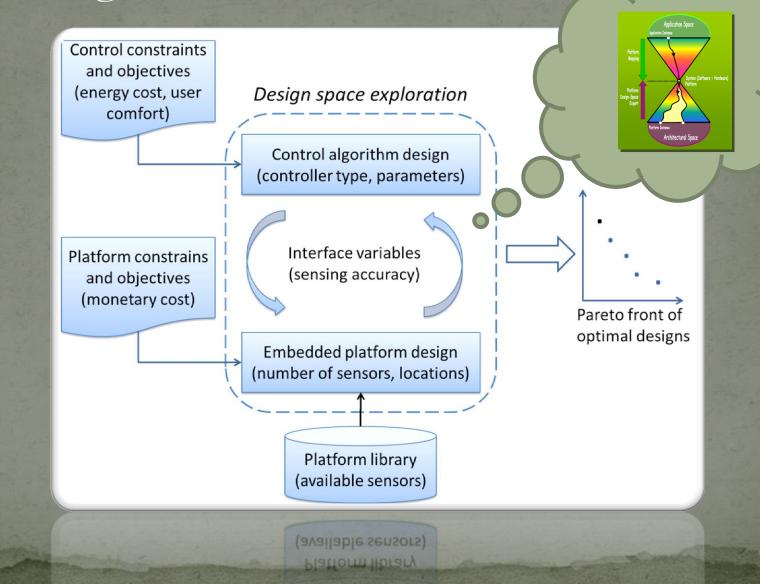
Problem

With...

- the employment of more complex HAVC control algorithms
- the use of distributed networked platforms, and
- *the imposing of tighter requirements for user comfort*

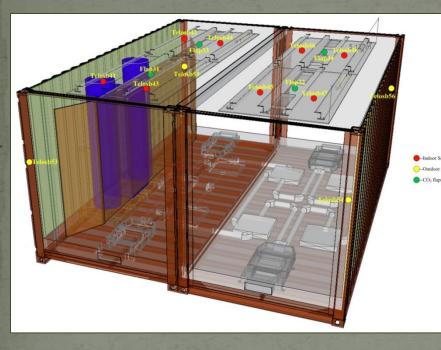
the assumption that... the embedded platform will always be sufficient for any control mechanism **is no longer true.**

Co-design framework for HVAC system



55

Sensing System Set-up



The environment sense system includes:

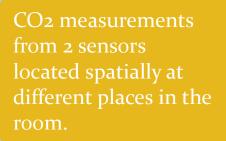
- 8 indoor sensors (Telosb41-48)
- 4 CO2 concentration sensors (flap31-34)
- 4 outdoor sensors (Telosb53-56)

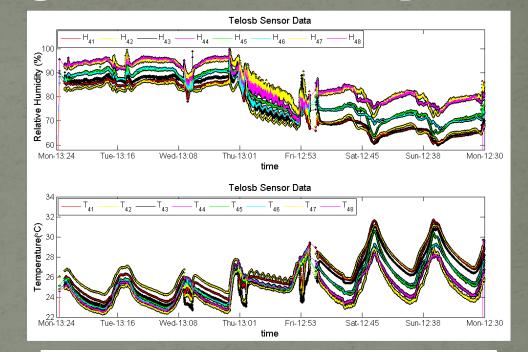
BubbleZERO Research Setup

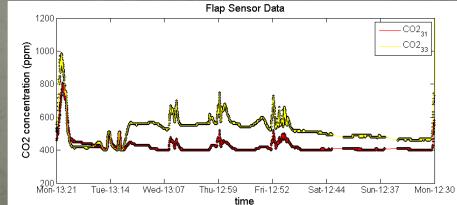
Which is conceived as part of the Low Exergy Module development for Future Cities Laboratory (FCL)

Sensor Reading from the Set-up

Temperature measurements from 8 sensors located spatially at different places in the room. The statistics of the sensor measurement error is extracted from this set of data.





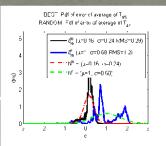


Analysis of Sensor Readings

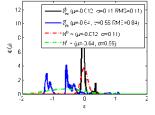
Average error of k sensors for the Minimal error set of sensors and a random choose of sensors.

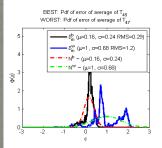
The *pdf* of the difference of the average of k sensor readings with the average of all $n_{ts}=7$ sensor readings. The **best**, worst and random set of sensors are selected based on their resulting Δ_{rms} error.

Average error of k sensors for the Minimal error set of sensors and the worst choose of sensors.

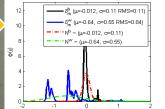


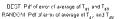
BEST: Pdf of error of average of T_{42}, T_{43}, T_{46} and T_{47} KANDOM: Pdf of error of average of T_{41}, T_{42}, T_{45} and T_{47}

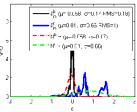




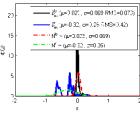
BEST: Pdf of error of average of T_{42} , T_{43} , T_{46} and T_{47} WORST: Pdf of error of average of T_{41} , T_{42} , T_{43} and T_{47}



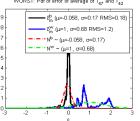




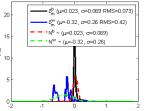
BEST Pdf of error of average of $T_{4,2}^{-1} \overline{4_{33}} T_{45}^{-1} \overline{4_{45}}$ and $\overline{4_{22}}$ RANDOM Pdf of error of average of $T_{41}^{-1} \overline{4_{22}} T_{43}^{-1} \overline{4_{45}}$ and $\overline{4_{45}}$



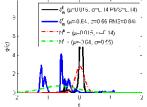
BEST: Pdf of error of average of T₄₁ and T₄₈ WORST: Pdf of error of average of T₄₇ and T₄₂

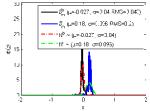


BEST: Pdf of error of average of $\rm T_{42},\,T_{43},\,T_{45},\,T_{46}$ and $\rm T_{47}$ WORST: Pdf of error of average of $\rm T_{41},\,T_{42},\,T_{43},\,T_{45}$ and $\rm T_{46}$

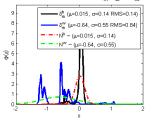


DEST Pdf of error of average of T_{41}, T_{45} and T_{48} RANDOM Pdf of error of average of T_{41}, T_{42} and T_{43}

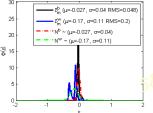




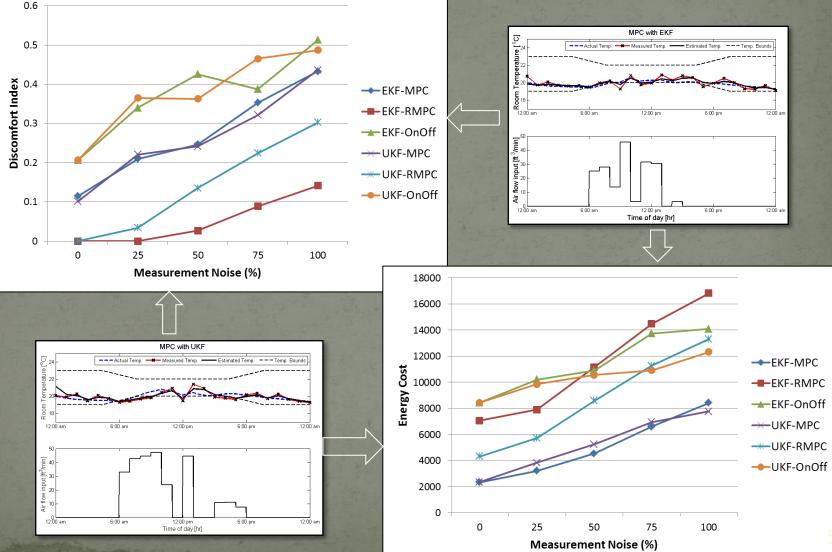
BEST: Pdf of error of average of T_{41} , T_{45} and T_{48} WORST: Pdf of error of average of T_{41} , T_{42} and T_{43}



BEST: Pdf of error of average of T_{41} , T_{42} , T_{43} , T_{46} , T_{47} and T_{48} WORST: Pdf of error of average of T_{41} , T_{42} , T_{43} , T_{45} , T_{46} and T_{48}

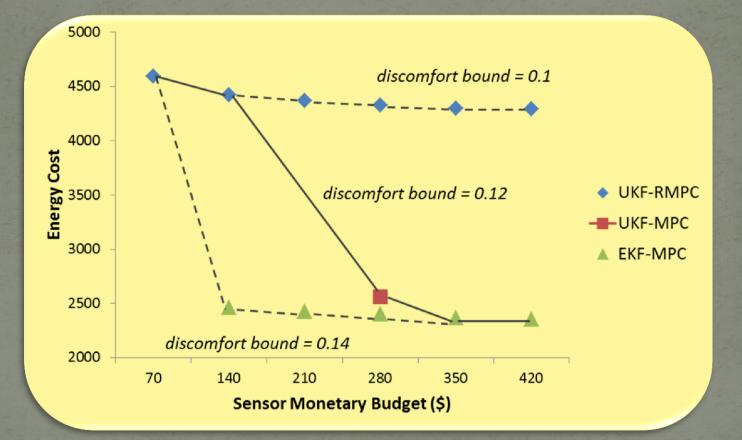


Simulation Results



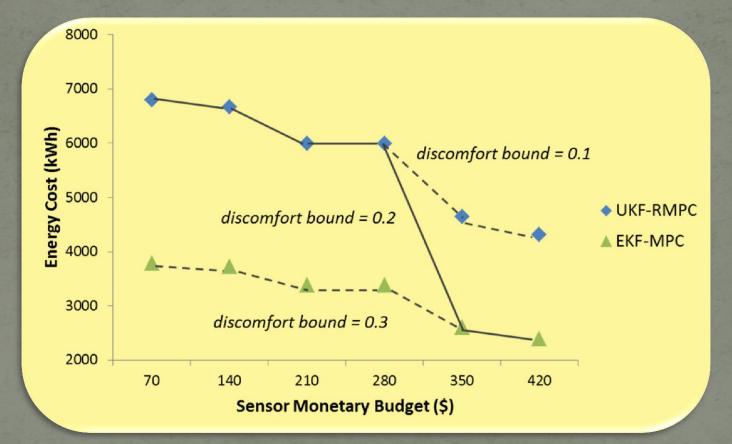
9

Pareto front Under Discomfort index Contraints



Pareto front under comfort constraints with **best** sensor locations

Pareto front Under Discomfort index Contraints



Pareto front under comfort constraints with random sensor locations

Outline

Motivation

Thermal Modeling

- First approach (Physical Buildings)
- Second Approach (Simulation Models)
- Model-Based Optimal Control Design
- Robust MPC

Comparing Different Control Strategies

Co-design of Control Algorithm and Embedded Platform
Buildings and Smart Grid

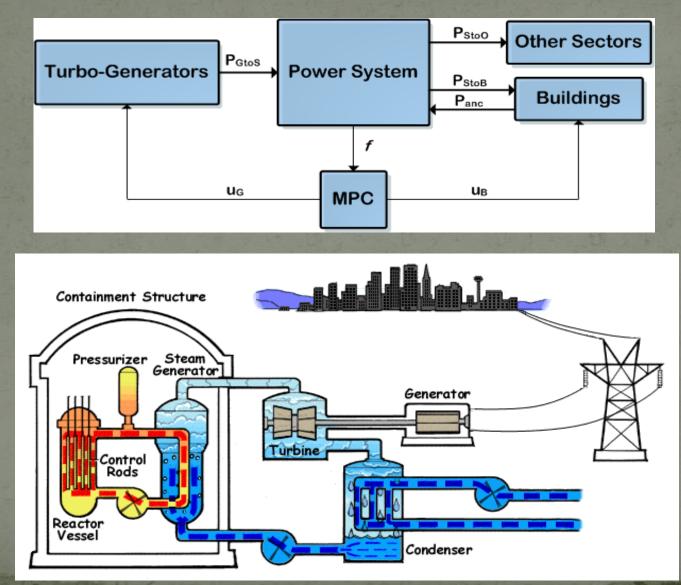
Ongoing Research...

Cyber-Physical System

Buildings and Smart Grid

Ancillary Services via Control of HVAC Systems

Ancillary Services via Control of Building HVAC Systems



Source: http://evergreennuclear.blogspot.com/2011/08/primer-on-how-pressurized-water-reactor.html

Thank You!

Questions?

More information at: <u>eecs.berkeley.edu/~maasoumy</u>

65

References

Mehdi Maasoumy, Alberto Sangiovanni-Vincentelli, "*Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control*", IEEE Design & Test of Computers, Special Issus on Green Buildings, July/Aug 2012

Yang Yang, Qi Zhu, Mehdi Maasoumy, and Alberto Sangiovanni-Vincentelli, "*Development of Building Automation and Control Systems*", IEEE Design & Test of Computers, Special Issue on Green Buildings, July/Aug 2012

Mehdi Maasoumy, Alberto Sangiovanni-Vincentelli, "*Optimal Control of Building HVAC Systems in the Presence of Imperfect Predictions*", Dynamic System Control Conference, Fort Lauderdale, FL, Oct 2012

Mehdi Maasoumy, Alessandro Pinto, Alberto Sangiovanni-Vincentelli, "*Model-based Hierarchical Optimal Control Design for HVAC Systems*" Dynamic System Control Conference, Arlington, VA 2011

Mehdi Maasoumy, "*Building Operating Platform Design for High Performance Zero-Energy Buildings,*" Master's Thesis, University of California, Berkeley