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What is Model-Based Design? 

1. Create a mathematical model of all the parts of the 
embedded system 
 Physical world 

 Control system 

 Software environment 

 Hardware platform 

 Network 

 Sensors and actuators 

2. Construct the implementation from the model 
 Goal: automate this construction, like a compiler 

 In practice, only portions are automatically constructed 



Model-based design: a quick assessment 

• Model-based design is used in industry 
but not to the extent that is desirable 

– algorithms are designed and analyzed 
using block diagram-based modeling 
tools 

– correctness of the algorithms is validated 
against models of the plant 

– models form the basis for all subsequent 
development stages 

• executable specification (instead of docs) 

• automatic code generation  

• Advantages 

– Time-saving and cost-effective 

– Design choices can be explored and 
evaluated quickly and reliably 

– Ideally, an optimized and fully tested 
system is obtained 



Model-based design: Difficulties 

• However, today in industry  

– model-based design is often limited to control algorithm description 

– incomplete plant modeling prevents accurate validation of algorithms 

• Experimental validation is still extensively used: 

– very expensive, time-consuming, bounded coverage 

– due to the high cost, OEM will provide less support to experimentation 

in Tier-1 companies 

• The partial implementation of model-based design is due to 

– insufficient investments in design process innovation 

– lack of methodologies, models and tools suitable to address critical 

steps in the design flow, which are currently handled relying on the 

experience of the designers 
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Automotive V-Models: a ‘Linear’ Development Process 

Development 
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Matlab 
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Separation of Concerns:  Keep the What Separated 
from the How (AUTOSAR) 
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Platform-based Design 

Platform 
Design-Space 

Export 

Platform 
Mapping 

Architectural Space 

Application Space 
Application Instance 

Platform Instance 

System (Software + Hardware) 
Platform 
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Outline 

• Platforms: a historical perspective 

• Platform-based Design 
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Platform-Based Design Definitions: 

Three Perspectives 

System  

Designers 

Industry 

Academic 

(ASV) 
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System Definition 

Ericsson's Internet Services Platform is a new tool for 

helping CDMA operators and service providers deploy 

Mobile Internet applications rapidly, efficiently and cost-

effectively 

Source: Ericsson press release 



Automotive  

• An automobile platform is a shared set of common design, engineering, 

and production efforts, as well as major components over a number of 

outwardly distinct models and even types of automobiles, often from 

different, but related marques. It is practiced in the automotive industry to 

reduce the costs associated with the development of products by basing 

those products on a smaller number of platforms. This further allows 

companies to create distinct models from a design perspective on similar 

underpinnings. 

• Key mechanical components that define an automobile platform include: 
– Floorpan, the collective pieces of the large sheet metal stamping that serves as the primary 

foundation of the monocoque chassis, of most of the structural and mechanical components 

– Front and rear axles and the distance between them - wheelbase 

– Steering mechanism and type of power steering 

– Type of front and rear suspensions 

– Placement and choice of engine and other powertrain components 
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Platform Architectures: Philips Nexperia 
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Platform Types 

“Communication Centric Platform” 
– SONIC, Palmchip, Arteris, ARM 

– Concentrates on communication 

• Delivers communication framework plus peripherals 

• Limits the modeling efforts 

SiliconBackplane™ 

(patented) 
{ 

SiliconBackplane 

Agent™ 

Open Core 

Protocol™ 

MultiChip 

Backplane™ 

DSP MPEG CPU DMA 

C MEM 
I O 

SONICs Architecture 

Source: G. Martin 
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Platform-types: 
 
 

IBM 

PowerPC 

7/00 
Mindspeed 

SkyRail 

gigabit serial I/O 

9/00 

RocketChips 

mixed-signal IP 

acquisition 

10/00 

Wind River 

O/S 

3/01 

Virtex-II Pro 

production 

3/02 

“Highly-Programmable Platform (Virtex-II Pro)” 

Xilinx 
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Quote from Tully of Dataquest 2002 

“This scenario places a premium on the flexibility and 

extensibility of the hardware platform. And it 

discourages system architects from locking differential 

advantages into hardware. Hence, the industry will 

gradually swing away from its tradition of starting a 

new SoC design for each new application, instead 

adapting platform chips to cover new opportunities.” 



Designing Platforms:  
the Component Manufacturer View 

19 

Application Space 
 
 
e 

Ideal Architectural Platform 



Using Platforms: the System Company 
View 
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Architectural Space 

Ideal Application Platform 

Application Space 
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Principles of Platform methodology: 

Meet-in-the-Middle 

• Top-Down: 

– Define a set of abstraction layers 

– From specifications at a given level, select a solution 

(controls, components) in terms of components (Platforms) 

of the following layer and propagate constraints 

• Bottom-Up: 

– Platform components (e.g., micro-controller, RTOS, 

communication primitives) at a given level are abstracted to 

a higher level by their functionality and a set of parameters 

that help guiding the solution selection process. The 

selection process is equivalent to a covering problem if a 

common semantic domain is used. 



22 

The Platform Concept  

• Meet-in-the-Middle Structured 

methodology  

that  limits the space of 

exploration, yet achieves 

good results in limited time 

• A formal mechanism for 

identifying the most critical 

hand-off  points in the  

design chain 

• A method for design re-use at 

all abstraction levels 

• An intellectual framework for 

the complete electronic 

design process! 

Texas Instruments 

OMAP 

Platform

Design-Space

Export

Platform

Mapping

Architectural Space

Application Space

Application Instance

Platform Instance

Semantic Platform
Platform

Platform

Design-Space

Export

Platform

Mapping

Architectural Space

Application Space

Application Instance

Platform Instance

Semantic Platform
Platform



Definitions 

• A platform is defined to be a library of components that 

can be assembled to generate a design at that level of 

abstraction. 

• Each element of the library has a characterization in 

terms of performance parameters together with the 

functionality it can support. (Quantities) 



Observation 

• The platform is a parametrization of the space of 

possible solutions.  

• Not all elements in the library are pre-existing 

components. Some may be “place holders" to indicate 

the flexibility of “customizing" a part of the design that is 

offered to the designer. For this part, we do not have a 

complete characterization of the element since its 

performance parameters depend upon a lower level of 

abstraction. 
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Platform Instance 

• A platform instance is a set of components that are 

selected from the library (the platform) and whose 

parameters are set. In the case of a virtual component, 

the parameters are set by the requirements rather than 

by the implementation. In this case, they have to be 

considered as constraints for the next level of 

refinement. 
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Integrated Solutions Based On The EXREAL 

PlatformTM 

We provide integrated solutions based on LSI development 
platform, application platform and partnerships 

Integrated Solution Platform 

Integrated solutions including applied application (including 

collaboration with users) 

Deployment to platform for each application 

Application Platform 

Flexible  
Scalability 

High Portability 
Heterogeneous 
Structure 
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Platform-Based Design 
 

• Platform: library of resources defining an abstraction layer 

– Resources do contain virtual components i.e., place holders that 
will be customized in the implementation phase to meet constraints 

– Very important resources are interconnections and communication 
protocols 

Platform 

Design-Space 

Export 

Platform 

Mapping 

Architectural Space 
Application Space 

Application Instance 

Platform Instance 
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Fractal Nature of Design 

Platform 
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Platform-Based Implementation 

•Platforms eliminate large loop iterations for affordable design 

•Restrict design space via new forms of regularity and structure that 

surrender some design potential for lower cost and first-pass success 

•The number and location of intermediate platforms is the essence of 

platform-based design 

Silicon Implementation 

Application 

Silicon Implementation 

Application 
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Platform-Based Design Process 

• Different situations will employ different intermediate platforms, hence 

different layers of regularity and design-space constraints 

• Critical step is defining intermediate platforms to support:   

– Predictability: abstraction to facilitate higher-level optimization 

– Verifiability: ability to ensure correctness 

Architecture 

Logic Regularity 

Component Regularity and Reuse 

Regular Fabrics 

Geometrical Regularity               Silicon Implementation 
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Implementation Process 

• Skipping platforms can potentially produce a superior design by 

enlarging design space – if design-time and product volume ($) permits 

• However, even for a large-step-across-platform flow there is a benefit to 

having a lower-bound on what is achievable from predictable flow 

Geometrical Regularity               Silicon Implementation 

Architecture 

Logic Regularity 

Component Regularity and Reuse 

Regular Fabrics 
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Tight Lower Bounds 

• The larger the step across platforms, the more difficult to: predict 

performance, optimize at system level, and provide a tight lower 

bound  

• Design space may actually be smaller than with smaller steps since 

it is more difficult to explore and restriction on search impedes 

complete design space exploration 

• The predictions/abstractions may be so wrong that design 

optimizations are misguided and the lower bounds are incorrect! 
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Design Flow 

• Theory: 

– Initial intent captured with declarative notation 

– Map into a set of interconnected component: 

• Each component can be declarative or operational 

• Interconnect is operational: describes how components interact 

• Repeat on each component until implementation is reached 

– Choice of model of computations for component and interaction is 

already a design step! 
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Consequences 

• There is no difference between HW and SW. Decision comes 
later. 

• HW/SW implementation depend on choice of component at the 
architecture platform level. 

• Function/Architecture co-design happens at all levels of 
abstractions  

– Each platform is an “architecture” since it is a library of usable 
components and interconnects. It can be designed independently of a 
particular behavior. 

– Usable components can be considered as “containers”, i.e., they can 
support a set of behaviors. 

–  Mapping chooses one such behavior. A Platform Instance is a mapped 
behavior onto a platform. 

– A fixed architecture with a programmable processor is a platform in this 
sense. A processor is indeed a collection of possible bahaviours. 

– A SW implementation on a fixed architecture is a platform instance. 

 



Platform Models for Model Based 
Development 

Development of 
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Control Architecture 

Final implementation 

Building Siting 

Network Design 
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Program Research 
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Courtesy UTC 

specifications 

PBD for Buildings: Systems of Systems Co-Design 
New design paradigms: Integrated multi-domain models analyzed in multiple levels  
topology ↔ mechanical/electrical systems ↔ multi-scale controls ↔ sensors + networks 
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Platform-Based Design enables architecture 

exploration (tradeoff weight, stability, …) 

The Problem: Unprecedented Power 
Requirements in Future Aircraft 

Today 

Power sources/sinks 

Electric distribution 

Control system 

Complex, heterogeneous 

system with multiple 

overlapping time scales 

 # power sources ~10 

 # loads ~1000 

 peak power ~ 4MW  

Future 

Redesign 

Power System 

Architecture 

Control System 

Architecture 

Hardware, 

Software, 

Communications 

Incremental conservative design 
Steady state worst-case power draw 
2x overdesign results in weight penalty 

Dynamics 

problems 

identified in 

verification 

Comms 

latency 

impacts 

stability 

 # power sources ~1 

 # loads ~100 

 peak power ~ 400kW 

Courtesy: Hamilton Sundstram (UTC) 
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Dynamics, control, 
communication latency 
addressed in all layers 

Robust design for distributed control system 

 Tools enable robust 
design of complex 
dynamical systems 



The Biologists Era: 
Search for workable devices, building substrates, and manufacturing strategies 

DNA strands 

Enzyme 

Plenty of  
others…. 

E. coli 

Proteins 

• Exciting times again… Researchers intensely exploring broad 

range of novel components (bio) 

Beyond Microelectronics 



Synthetic Biology with PBD:  
Specification, Design, and Assembly: Putting it all together 
 
 1. Decide on the general functionality 

desired. 

2. Specify the composition 

of the devices and the 

constraints on the system. 

3. Design variations of the design, 

assign theoretical parts to physical 

samples, modify sequence, etc. 

4. Send design to liquid handling robot 

assembly workflows, capture 

successes and failures as constraints 

for future designs, and save 

created devices. 

Rule r4a(rp1 NOTWITH lr); 

Note(r4a); 

InduciblePromoter ip(“ACTGGT…”); 

AntiRepressor ar(“CATGGT…”, “high”);  

Terminator t(“GGTAAC…”, 99); 

LyticReplicon lr(“CTTACC…”, 110); 
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Platform-based Design Environment for Synthetic Biological Systems 
Douglas Densmore (EECS), 
J.Christopher Anderson (Bioengineering), 
Alberto Sangiovanni-Vincentelli (EECS) 
 

• Clotho is a design environment for 
the creation of biological systems from 
standardized biological parts. 

• Composed of “views”, “connectors”, 
“interfaces” and “tools” 

• iGEM 2008  and 2009 Winner “Best 
Software Tool” and Gold Medal. 

• Alpha version available at 
biocad-server.eecs.berkeley.edu/wiki. 

BioBricks 

GSRC Annual Symposium 

Clotho (Greek: Κλωθώ) — the 

"spinner" — spun the threads of 

life with her distaff to bring a being 

into existence. 

41 



Platform Based Design for the Swarm! 

© Alberto Sangiovanni-Vincentelli. All rights reserved. 42 
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Power Train Design 
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The Design Problem 

Given a set of specifications from a car manufacturer,  

– Find a set of algorithm to control the power train 

– Implement the algorithms on a mixed mechanical-electrical 

architecture (microprocessors, DSPs, ASICs, various sensors 

and actuators) 
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Power-train control system design 

•  Specifications given at a high level of abstraction 

•  Control algorithms design 

•  Mapping to different architectures using performance 

estimation techniques and automatic code generation 

from models 

•  Mechanical/Electronic architecture selected among a 

set of candidates 
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HW/SW implementation architecture 

• a set of possible hw/sw implementations is given 
by 
–  M different hw/sw implementation architectures 

– for each hw/sw implementation architecture m {1,...,M}, 

• a set of hw/sw implementation parameters z 

– e.g. CPU clock, task priorities, hardware frequency, etc. 

• an admissible set XZ of values for z 
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The classical and the ideal design approach 

• Classical approach (decoupled design) 

–  controller structure and parameters (r  R, c  XC)  

• are selected in order to satisfy system specifications 

–  implementation architecture and parameters (m  M, z  XZ) 

• are selected in order to minimize implementation cost 

– if system specifications are not met, the design cycle is repeated 

 

• Ideal approach 

–  both controller and architecture options (r, c, m, z) are selected at the 

same time to  

• minimize implementation cost 

• satisfy system specifications 

– too complex!! 
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  Platform i+1 
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Implementation abstraction layer 
• we introduce an implementation abstraction layer 

– which exposes ONLY the implementation non-idealities that affect the 

performance of the controlled plant, e.g. 
– control loop delay 

– quantization error 

– sample and hold error 

– computation imprecision 

 

• at the implementation abstraction layer, platform instances are 

described by 

–  S different implementation architectures 

– for each implementation architecture s {1,...,S}, 

• a set of implementation parameters p 

– e.g. latency, quantization interval, computation errors, etc. 

• an admissible set XP of values for p 
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Platform 
Design-Space 

Export 

Platform 
Mapping 

  

Platform stack & design refinements 

Implementation Space 

Application Space 
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Effects of controller implementation in the 

controlled plant performance 

d 

Controller 

y      

Plant  w u 

 r 

w  

r  

u  + 

nu 

+ 

+ 

nr 

nw 

• modeling of implementation non-idealities: 

–  u, r, w : time-domain perturbations 

• control loop delays, sample & hold , etc. 

–  nu , nr , nw :value-domain perturbations 

• quantization error, computation imprecision, etc. 
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Application effort 

First Application: 10 months 
 
Successive Application: 4 months 

Application code (lines) Calibrations (Bytes) 

Total Modified Total Modified 

71,000 1,400 (2%) 28,000 20 
Modifications due to compiler change 

Device drivers SW(lines) Calibrations (Bytes) 

Total Modified Total Modified 

6000 1200 (20%) 1000 10 
Modifications due to compiler change and new BIOS 
interface 
 



Aircraft Electrical Power 
System (EPS) Design Problem  

 An EPS generates, regulates 

and distributes electrical power  

throughout the aircraft 

 An EPS is a complex  

cyber-physical system that  

needs to satisfy safety and  

reliability requirements 

 



Boing 767 Simplified Power System 
Schematic (Single-Line Drawing)  

Power Sources 
AC Buses 

AC Power Handling Switches 

DC Buses 

TRU 
DC Tie 
Bat Bus 

 

BPCU GCU GCU 



Challenges 

Modeling 

 Heterogeneity 

 Mechanical, electrical and cyber components 

 Requirements represented in different forms 

 Multi-view (e.g., behavioral, structural, timing, power, 

temperature, size and cost) modeling 

Simulation 

 Semantic integration and co-simulation of different 

models of computation 

 Simulation of large, complex systems 

Verification 

 Ensuring the requirements and specifications are 

satisfied 

 



Example: Power Quality 

• The aircraft electric power system shall provide power 

with the following characteristics: 115 +/- 5 VRMS for AC 

components and 28 +/- 2 VDC for DC components. 

• Arithmetic (interval) inequalities on real numbers  

110 120

26 30

LAC

LDC

V

V

 
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Example: Reliability 

• The failure probability for a primary load shall be smaller 

than 10-9. 

• Linear inequalities on probabilistic expressions 
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Example: Safety 

• The BPCU shall monitor the status of all power sources: L-

Generators, R-Generators and APUs and actuate the 

contactors within the SLD such that the AC buses are 

powered according to the specified priorities, essential buses 

are not unpowered for more than a specified amount of time 

and no power sources are connected in parallel. 

• Linear temporal logic  

 

G{(LGEN = ON ∧ RGEN = ON)   F (LBTB = OPEN ∨ RBTB = 

OPEN)} 

G{(LGEN = ON ∧ APU = ON)   F (LBTB = OPEN)} 



Example: Priority 

• L-AC Panel shall be powered according to the following 

priority order: L-Generators, APUs and R-Generators. 

• R-AC Panel shall be powered according to the following 

priority order: R-Generators, APUs and L-Generators. 

• Linear temporal logic 

 

G{(LGEN = OFF ∧ APU = Available)   F (LBTB = 

CLOSED ∧ APU = ON)} 

 



PBD of EPS Topology and Control 


