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What is Model-Based Design?

1. Create a mathematical model of all the parts of the
embedded system

Physical world

Control system

Software environment

Hardware platform

Network

Sensors and actuators
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2. Construct the implementation from the model
O Goal: automate this construction, like a compiler
O In practice, only portions are automatically constructed



Model-based design: a quick assessment

 Model-based design is used in industry

. . Application LI T
but not to the extent that is desirable DeveicpmentToals | [
— algorithms are designed and analyzed |_Tf'°"°°“‘*“ Blocksets
using block diagram-based modeling Data Access Tools
tools Student

Products

— correctness of the algorithms is validated
against models of the plant

— models form the basis for all subsequent
development stages
« executable specification (instead of docs)
¢ automatic code generation

« Advantages
— Time-saving and cost-effective

— Design choices can be explored and
evaluated quickly and reliably

— lIdeally, an optimized and fully tested
system is obtained




Model-based design: Difficulties

 However, today Iin industry
— model-based design is often limited to control algorithm description
— Iincomplete plant modeling prevents accurate validation of algorithms

« Experimental validation is still extensively used:
— very expensive, time-consuming, bounded coverage

— due to the high cost, OEM will provide less support to experimentation
in Tier-1 companies

* The partial implementation of model-based design is due to

— Insufficient investments in design process innovation

— lack of methodologies, models and tools suitable to address critical
steps in the design flow, which are currently handled relying on the
experience of the designers



The V design process




Automotive V-Models: a ‘Linear’ Development Process

Development ——
of Car System

of Sub-System

Development of
Mechanical Part (s)

ECU |
Development

ECU SW

Development

Development

ECU SW
Implementation

Sign-Offl

‘ Car System
Sub-System(s)

Integration, Test,
and Validation

[J: Sub-System Sign-

Off!
U/ Sens./Actrs./Mech.
Part(s) Integration,
Calibration, and Test

|

ECU Sign-Off!
ECU HW/SW
Integration and
Test
ECU HW
Slgn-Offl ECU:
ECU SW Electrical Control Unit
Integration and
Test




Separation of Concerns: Keep the What Separated
from the How (AUTOSAR)
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Platform-based Design




Outline

« Platform-based Design



Platform-Based Design Definitions:
Three Perspectives

System
Designers

Academic

(ASV)




System Definition

Total CDMA Solution

Ericsson's Internet Services Platform is a new tool for
helping CDMA operators and service providers deploy
Mobile Internet applications rapidly, efficiently and cost-

effectively

Source: Ericsson press release



Automotive

« An automobile platform is a shared set of common design, engineering,
and production efforts, as well as major components over a number of
outwardly distinct models and even types of automobiles, often from
different, but related marques. It is practiced in the automotive industry to
reduce the costs associated with the development of products by basing
those products on a smaller number of platforms. This further allows
companies to create distinct models from a design perspective on similar
underpinnings.

« Key mechanical components that define an automobile platform include:

— Floorpan, the collective pieces of the large sheet metal stamping that serves as the primary
foundation of the monocoque chassis, of most of the structural and mechanical components

— Front and rear axles and the distance between them - wheelbase
— Steering mechanism and type of power steering

— Type of front and rear suspensions

— Placement and choice of engine and other powertrain components
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Prolific VW platform is key in race to be global
No. 1

MQB forecast to save automaker 14 billion euros by 2019
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varnable iniform vanable variable

With VW's MQB architecture, only the engine position and distance between the front axle and pedal box
are fixed. Virtually all other dimensions are variable.
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VOLKSWAGEN

Modular Toolkit — Preparing for Modular Transverse Matrix

MODULAR LONGITUDINAL MATRIX (MLB)

The Modular Longitudinal Matrix is the use of a modular strategy in
vehicle platforms in which the drive train is mounted longitudinally to the
direction of travel. This modular arangement of all components enables
maximum synergies to be achieved between the vehicle families. This
concept is already used at Audi since 2007 to develop vehicles.

MODULAR TRANSVERSE MATRIX (MQB)

The Modular Transverse Matrix signifies the next quantum leap in the Unit costs ~ 20%
extension of the cross-brand platform and modular strategy. As an extension o

of the modular strategy, this toolkit can be deployed in vehicles whose

architecture permits a transverse amrangement of the engine components. One-off expenditure ~ 20%
The MQB enables us to meet customers’ expectations for a growing variety

of vehicle models, equipment features and design, reducing the complexity, )

costs incurred and time required for development at the same time. From
2012, the Volkswagen Passenger Cars, Volkswagen Commercial Vehicles,
Audi, SEAT and Skoda brands will develop a wealth of models based on the 4

MQB toolkit, all of which will feature innovations in the field of infotainment Significant weight and
and driver assisiance. emission reduction

EHBI‘II}Q |I'|

Producticn

Engineered hours per vehicle ~ 30%
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Platform Architectures: Philips Nexperia

MIPS™ TriMedia™

PI BUS

A
v

experia

DVP MEMORY BUS

'

DVP SYSTEM SILICON

Hardware Software

Kernel: pSOS, VxWorks, Win-CE




Platform Types

“Communication Centric Platform”
— SONIC, Palmchip, Arteris, ARM
— Concentrates on communication
» Delivers communication framework plus peripherals
 Limits the modeling efforts

SONICs Architecture

SiliconBackplane™
 (patented)
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Platform-types:

“Highly-Programmable Platform (Virtex-1l Pro)”

Virtex-1l Pro
production
3/02

. IBM Wind River
PowerPC O/S
L Mindspeed RocketChips S
SkyRaill mixed-signal IP

gigabit serial /0 acquisition
9/00 10/00



Quote from Tully of Dataquest 2002

“This scenario places a premium on the flexibility and
extensibility of the hardware platform. And it
discourages system architects from locking differential
advantages into hardware. Hence, the industry will
gradually swing away from its tradition of starting a
new SoC design for each new application, instead
adapting platform chips to cover new opportunities.”



Designing Platforms:
the Component Manufacturer View

mcaﬁon Space \

ldeal Architectural Platform
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Using Platforms: the System Company
View

Ideal Application Platform

Nrchitectu ral Space/




Principles of Platform methodology:
Meet-in-the-Middle

 Top-Down:
— Define a set of abstraction layers

— From specifications at a given level, select a solution
(controls, components) in terms of components (Platforms)
of the following layer and propagate constraints

* Bottom-Up:
— Platform components (e.g., micro-controller, RTOS,
communication primitives) at a given level are abstracted to
a higher level by their functionality and a set of parameters
that help guiding the solution selection process. The
selection process is equivalent to a covering problem if a
common semantic domain is used.
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The Platform Concey

« Meet-in-the-Middle Structured
methodology
that limits the space of
exploration, yet achieves
good results in limited time

» A formal mechanism for
identifying the most critical
hand-off points in the
design chain

* A method for design re-use at
all abstraction levels

* An intellectual framework for
the complete electronic
design process!
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Nexperia™ Hardware Architecture
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Definitions

« A platform is defined to be a library of components that
can be assembled to generate a design at that level of
abstraction.

« Each element of the library has a characterization in
terms of performance parameters together with the
functionality it can support. (Quantities)



Observation

* The platform is a parametrization of the space of
possible solutions.

* Not all elements in the library are pre-existing
components. Some may be “place holders" to indicate
the flexibility of “customizing” a part of the design that is
offered to the designer. For this part, we do not have a
complete characterization of the element since Iits
performance parameters depend upon a lower level of
abstraction.
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Platform Instance

« A platform instance is a set of components that are
selected from the library (the platform) and whose
parameters are set. In the case of a virtual component,
the parameters are set by the requirements rather than
by the implementation. In this case, they have to be
considered as constraints for the next level of
refinement.
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Integrated Solutions Based On The EXREAL

Platform™
_1 We provide integrated solutions based on LSI development

platform, application platform and partnerships

Integrated Solution Platform ] """""""""""" g

Integrated solutions including applied application (including
collaboration with users)

- - Application Platform ] ———————————

Deployment to plattorm tor each application |

y 4
EXIREAL cairorm
Flexible Heterogeneous
High Portapility | 9.

- S S e D e e D DS DG B D D D DG D D G G D B D Ba B D Ba B e B e e e mm

’————————————\
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Separation of Concerns (ca. 1990!)

Behavior

o ©




Platform-Based Design

Application Space ]
Architectural Space

Platform Instance
Application Instarice ¢

T —

Platf Platform
- Ui Design-Space

haping =qefelg

« Platform: library of resources defining an abstraction layer

— Resources do contain virtual components i.e., place holders that
will be customized in the implementation phase to meet constraints

— Very important resources are interconnections and communication
protocols

28



Fractal Nature of Design

Function
Space

Function
Instance

29

Function
Instance

Function Mapped
Space

Platform Platform Design-
Instance Space Export

——

!

Platform

Mapped (Architectural) Space

' Platform
Instance

Platform
(Architectural) Space

Platform
Instance



Platform-Based Implementation

Platforms eliminate large loop iterations for affordable design

*Restrict design space via new forms of regularity and structure that
surrender some design potential for lower cost and first-pass success

*The number and location of intermediate platforms is the essence of
platform-based design

Application Application

Silicon Implementation Silicon Implementation

4\ 4
44




Platform-Based Design Process

 Different situations will employ different intermediate platforms, hence
different layers of regularity and design-space constraints

« Critical step is defining intermediate platforms to support:
— Predictability: abstraction to facilitate higher-level optimization
— Verifiability: ability to ensure correctness

Architecture
Logic Regularity
Component Regularity and Reuse

Regular Fabrics

|N‘}|}|}|

Geometrical Regularity Silicon Implementation



Implementation Process

Skipping platforms can potentially produce a superior design by
enlarging design space — if design-time and product volume ($) permits

However, even for a large-step-across-platform flow there is a benefit to
having a lower-bound on what is achievable from predictable flow

Architecture
Logic Regularity

Component Regularity and Reuse A

Regular Fabrics

N|N|N

i

Geometrical Regularity Silicon Implementation



Tight Lower Bounds

The larger the step across platforms, the more difficult to: predict
performance, optimize at system level, and provide a tight lower
bound

Design space may actually be smaller than with smaller steps since
it is more difficult to explore and restriction on search impedes
complete design space exploration

The predictions/abstractions may be so wrong that design
optimizations are misguided and the lower bounds are incorrect!



Design Flow

* Theory:
— Initial intent captured with declarative notation
— Map into a set of interconnected component:
« Each component can be declarative or operational

* Interconnect is operational: describes how components interact
* Repeat on each component until implementation is reached

— Choice of model of computations for component and interaction is
already a design step!



Consequences

 There is no difference between HW and SW. Decision comes
later.

« HW/SW implementation depend on choice of component at the
architecture platform level.

« Function/Architecture co-design happens at all levels of
abstractions
— Each platform is an “architecture” since it is a library of usable

components and interconnects. It can be designed independently of a
particular behavior.

— Usable components can be considered as “containers’, i.e., they can
support a set of behaviors.

— Mapping chooses one such behavior. A Platform Instance is a mapped
behavior onto a platform.

— A fixed architecture with a programmable processor is a platform in this
sense. A processor is indeed a collection of possible bahaviours.

— A SW implementation on a fixed architecture is a platform instance.



Platform Models for Model Based
Development

Distributed
Povel I System
istribu OV
System Sign-Off!
Distributed Sub-System(s)
System Integration, Test,
Distributed Virtual
System Integration of
Partlélotr)ngg t Platfor SUb_Elg\}veon:IES) w/
-Systems
MuoderBased AbStraCtl Protocol, Test,

Development and Validation

Sub-Systems
Requirements

Network Protocol Network
Requirements Communicatio
% n Protocol
Sub-System(s) Sign-Off!

Sign-Off!



PBD for Buildings: Systems of Systems Co-Design

New design paradigms: Integrated multi-domain models analyzed in multiple levels
topology < mechanical/electrical systems — multi-scale controls — sensors + networks

uilding Siting Mechanical and Electrical Program Research

Systems Architecture Thru_sts
e * Choice of Layers

* Design
Flow/Methodology

* Co-simulation
Environment

* Pilot Studies

specifications

constraints
Control Architecture

Mechanical and
Electrical Systems

specifications

constraints

Control Design

Network Design

Courtesy UTC ey
specifications
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The Problem: Unprecedented Power

Requirements in Future Aircraft

Today Future

Complex, heterogeneous
system with multiple
overlapping time scales

@) Power sources/sinks
# power sources ~1 Electric distribution # power sources ~10
# loads ~100 o R0l system # loads ~1000
peak power ~ 400kW peak power ~ 4AMW

ncremental conservative design
Steady state worst-case power draw
X overdesign results in weight penalty

Dynamics 4_"

problems
identified in (

verification

Z: Data Ink layer

Comms
latency
impacts
stability

Courtesy: Hamilton Sundstram (UTC)
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Beyond Microelectronics

« Exciting times again... Researchers intensely exploring broad
range of novel components (bio)

Plenty of
others....

The Biologists Era:

Search for workable devices, building substrates, and manufacturing strategies
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Synthetic Biology with PBD:

Specification, Design, and . Putting it all together
1. Decide on the general functionality InducerAAnﬁSpressm ReEr:ae)ssor

desired. 4} T T
2. Specify the composition %--—.
of the devices and the Phagemid ? Lysogen |

constraints on the system.

InduciblePromoter ip(“ACTGGT...”); Anti Repressor Gene z}> Activation
'_?ntiR_ep;esiokaég;_f:gGGTé'g'”’ “high”); ‘I’ Lytic Replican _I Repression
erminator t(“ o :
LyticRepIico(n Ir(“CTTACC...”,)110); @D packaging site —# Protein Production
E> Repressor Gene ?_-blnducible Promoter
r4da(rpl NOTWITH Ir); ip
(r4a);

3. Design variations of the design,
assign theoretical parts to physical
samples, modify sequence, etc.

4. Send design to liquid handling robot
workflows, capture

successes and failures as constraints

for future designs, and save

created devices.



Platform-based Design Environment for Synthetic Biological Systems
Douglas Densmore (EECS),

J.Christopher Anderson (Bioengineering),

Alberto Sangiovanni-Vincentelli (EECS)

P B0034 [C0010 BO015 S

BioBricks"

Clotho (Greek: KAwBw) — the
"spinner" — spun the threads of
life with her distaff to bring a being
into existence.

« Clotho is a design environment for
the creation of biological systems from

Stan d ard i Zed b i O | O g i C aI p arts ; - = ‘y::: > ;Im?;:tp;:::ﬁnn interactions with ather parts
« Composed of “views”, “connectors”, 2 Colecon o st instancon . Conine oty oty
= i nte rfa ces” a n d “tools” E;:Tiigtrgnﬁmhlhctu re instance ! implemented with part instances
« IGEM 2008 and 2009 Winner “Best Switch A Switch B
Software Tool” and Gold Medal. '

1 Alpha VerSIOn avallable at R ACGCTT|CGTACGTAGGTCAAG
biocad-server.eecs.berkeley.edu/wiki.




Platform Based Design for the Swarm!

Distributed Resources

A continuously changing
alignment
(environment, density, activity)

Utility Maximization

“What matters in the end is the utility

42 © Alpberto Sangiovanni-Vincentelli. A



Power Train Design

Interface m?g‘lg

FM/DAB e App"cation Transceiver
Radio

Data-Bus




The Design Problem

Given a set of specifications from a car manufacturer,
— Find a set of algorithm to control the power train

— Implement the algorithms on a mixed mechanical-electrical
architecture (microprocessors, DSPs, ASICs, various sensors
and actuators)



Power-train control system design

Specifications given at a high level of abstraction

Control algorithms design

Mapping to different architectures using performance
estimation techniques and automatic code generation
from models

Mechanical/Electronic architecture selected among a
set of candidates



HW/SW implementation architecture

+ a set of possible hw/sw implementations is given
by
- M different hw/sw implementation architectures
- for each hw/sw implementation architecture m e{1,...,M},

- a set of hw/sw implementation parameters z
- e.g. CPU clock, task priorities, hardware frequency, etc.

» an admissible set X, of values for z

Customer

[ Libraries
Application
Specific
; Software
(SE e I/O drivers & handlers

>

o )®)]
=0
Q=
=.0
(OR
wn

Jalawoyaoe |

(> 20 configurable module§

uControllers Library




The classical and the ideal design approach

» Classical approach (decoupled design)
— controller structure and parameters (r e R, ¢ € X.)
« are selected in order to satisfy system specifications
— implementation architecture and parameters (m M, z € X,)
« are selected in order to minimize implementation cost
— if system specifications are not met, the design cycle is repeated

» |deal approach

— both controller and architecture options (r, ¢, m, z) are selected at the
same time to
* minimize implementation cost
 satisfy system specifications

— too complex!!



Platform stack & design refinements

Application Space

Platform
Mapping

Refinement

Platform
Design-Space
Export

T

Implementation Space



DESIGN

Power-train System Specifications

r

Power-train Syste

Capture System

Design Mechanical
Components

A ota

. Functional .
Behavior z[ o Architecture
Decomposition
\ \, J
4 N\
Functional Partitioning and Capture
Optimization ElectricalMechanical
Network Architecture

Functions

Operations

and MacroArchitecture

Operation
Refinement
R N
Operational Capture Electronic
Architecture (ES Architecture
J
HW/SW —> Verify
partitioning Performance
HW and SW ]
eBa Components » Verify Components
& Implementation )

Electronic
System
Mapping

Components

A2

A3

A4

A5



Implementation abstraction layer
 we introduce an implementation abstraction layer

— which exposes ONLY the implementation non-idealities that affect the
performance of the controlled plant, e.qg.

control loop delay
guantization error
sample and hold error
computation imprecision

« at the implementation abstraction layer, platform instances are
described by
— different implementation architectures
— for each implementation architecture
« aset of implementation parameters

e.g. latency, quantization interval, computation errors, etc.

« an admissible set of values for



Platform stack & design refinements

Application Space

functional layer

Platform lcon‘rrol struc. & par. (r,c)
Mapping
Refinement g (1650)
Platform e
Design-Space implem. struc. & par. (s,p)

Export
implementation abstraction layer

hw/sw implementation
struc & par. (m,z)

hw/sw implementation layer

Implementation Space



Effects of controller implementation in the
controlled plant performance

* modeling of implementation non-idealities:
— AU, Ar, Aw ¢ time-domain perturbations
 control loop delays, sample & hold , etc.
— n,,n,,n,:value-domain perturbations
* quantization error, computation imprecision, etc.



Choosing an Implementation Architecture

Application Space (Features)

Application Instances -

Platform
Specification

Q)
Application Software
——— e e
Platform

(no ISA)
Software Platform
¥ A s
Platform Design Space

Exploration

Device Drivers

Platform Instance . Input devices Output Devices

Architectural Space (Performance)



Application effort

Application code (lines)

Calibrations (Bytes)

Total Modified

Total Modified

71,000 1,400 (2%)

28,000 20

Modifications due to compiler

change

Device drivers SW(lines) Calibrations (Bytes)
Total Modified Total Modified
6000 1200 (20%) 1000 10

Interface

Modifications due to compiler change and new BIOS

First Application: 10 months




Aircraft Electrical Power
System (EPS) DeS|gn Problem

» An EPS generates, regulates
and distributes electrical power
throughout the aircraft

» An EPS is a complex
cyber-physical system that
needs to satisfy safety and
reliability requirements

e




Boing 767 Simplified Power System
Schematic (Single-Line Drawing)

Power Sources

AC Buses

AC Power Handling Switches
DC Buses
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Challenges

Modeling

Mechanical, electrical and cyber components
Requirements represented in different forms

Multi-view (e.g., behavioral, structural, timing, power,
temperature, size and cost) modeling

Simulation

Semantic integration and co-simulation of different
models of computation

Simulation of large, complex systems
Verification

Ensuring the requirements and specifications are
satisfied



Example: Power Quality

« The aircraft electric power system shall provide power
with the following characteristics: 115 +/- 5 VRMS for AC
components and 28 +/- 2 VDC for DC components.

110<V,,. <120
26 <V, . <30



Example: Reliability

« The failure probability for a primary load shall be smaller
than 10-°.

P[LAC unpowered| <10~

P[LDC unpowered] <107



Example: Safety

« The BPCU shall monitor the status of all power sources: L-
Generators, R-Generators and APUs and actuate the
contactors within the SLD such that the AC buses are
powered according to the specified priorities, essential buses
are not unpowered for more than a specified amount of time
and no power sources are connected in parallel.

G{(LGEN =ON A RGEN =ON) > F (LBTB =OPEN V RBTB =
OPEN)}

G{(LGEN=ON A APU=ON) > F (LBTB=OPEN)}



Example: Priority

« L-AC Panel shall be powered according to the following
priority order: L-Generators, APUs and R-Generators.

 R-AC Panel shall be powered according to the following
priority order: R-Generators, APUs and L-Generators.

 Linear temporal logic

G{(LGEN = OFF A APU = Available) > F (LBTB =
CLOSED A APU = ON)}



PBD of EPS Topology and Control
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