
EE249Fall12
1

Models Of Computation for reactive systems

• Main MOCs:
– Communicating Finite State Machines

– Dataflow Process Networks

– Petri Nets

– Discrete Event

– (Abstract) Codesign Finite State Machines

• Main languages:
– StateCharts

– Esterel

– Dataflow networks

EE249Fall12
2

Finite State Machines

• Functional decomposition into states of operation

• Typical domains of application:

– control functions

– protocols (telecom, computers, ...)

• Different communication mechanisms:

– synchronous

– (classical FSMs, Moore ‘64, Kurshan ‘90)

– asynchronous

– (CCS, Milner ‘80; CSP, Hoare ‘85)

EE249Fall12
3

FSM Example

• Informal specification:

– If the driver

– turns on the key, and

– does not fasten the seat belt within 5 seconds

– then an alarm beeps

– for 5 seconds, or

– until the driver fastens the seat belt, or

– until the driver turns off the key

EE249Fall12
4

FSM Example

KEY_ON => START_TIMER

END_TIMER_5 =>
ALARM_ON

KEY_OFF or
BELT _ON =>

END_TIMER_10 or
BELT_ON or
KEY_OFF => ALARM_OFF

If no condition is satisfied, implicit self-loop in the current state

WAIT

ALARM

OFF

EE249Fall12
5

FSM Definition
– FSM = (I, O, S, r, )

– I = { KEY_ON, KEY_OFF, BELT_ON, END_TIMER_5,
END_TIMER_10 }

– O = { START_TIMER, ALARM_ON, ALARM_OFF }

– S = { OFF, WAIT, ALARM }

– r = OFF

 : 2I  S S
e.g. ({ KEY_OFF }, WAIT) = OFF

: 2I  S O

e.g. ({ KEY_ON }, OFF) = { START_TIMER }

Set of all subsets of I (implicit “and”)

All other inputs are implicitly absent

EE249Fall12
6

Non-deterministic FSMs

 and may be relations instead of functions:

 2I  S  S

e.g. ({KEY_OFF, END_TIMER_5}, WAIT) = {{OFF}, {ALARM}}

 2I  S  2O

• Non-determinism can be used to describe:

– an unspecified behavior
(incomplete specification)

– an unknown behavior
(environment modeling)

implicit “and” implicit “or”

EE249Fall12
7

• E.g. error checking first partially specified:

• Then completed as even parity:

NDFSM: incomplete specification

BIT or not BIT => BIT or not BIT => BIT or not BIT => ERR

BIT or not BIT =>
...

SYNC =>

BIT =>

not BIT =>

not BIT => ERR
...

SYNC =>

not BIT =>

...not BIT =>

BIT =>

not BIT =>

BIT =>

BIT =>

BIT => ERR

0 1 7 8

p1 p7

d7d10 8

EE249Fall12

NDFSM: unknown behavior

• Modeling the environment

• Useful to:
– optimize (don’t care conditions)

– verify (exclude impossible cases)

• E.g. driver model:

• Can be refined
– E.g. introduce timing constraints

– (minimum reaction time 0.1 s)

s0

=> KEY_ON or
KEY_OFF or
BELT_ON

EE249Fall12
9

NDFSM: time range

• Special case of unspecified/unknown behavior, but so common
to deserve special treatment for efficiency

• E.g. delay between 6 and 10 s

0

1 2 3 4

5

6

78

9

START => SEC =>

SEC => END

SEC => SEC =>

SEC =>

SEC =>

SEC =>
SEC =>

SEC =>

START =>

SEC =>
END

SEC => END

SEC =>
END

EE249Fall12

NDFSMs and FSMs

• Formally FSMs and NDFSMs are equivalent

– (Rabin-Scott construction, Rabin ‘59)

• In practice, NDFSMs are often more compact

– (exponential blowup for determinization)

s1

s2 s3

s1

s2,s3

a
a

b

a

c a

s3
b

a

s2

c

ba

s1,s3
c

a

c

EE249Fall12
11

Finite State Machines

• Advantages:

– Easy to use (graphical languages)

– Powerful algorithms for

– synthesis (SW and HW)

– verification

• Disadvantages:

– Sometimes over-specify implementation

– (sequencing is fully specified)

– Number of states can be unmanageable

– Numerical computations cannot be specified compactly (need
Extended FSMs)

EE249Fall12
12

Modeling Concurrency

• Need to compose parts described by FSMs

• Describe the system using a number of FSMs and interconnect
them

• How do the interconnected FSMs talk to each other?

EE249Fall12
13

FSM Composition

• Bridle complexity via hierarchy: FSM product yields an FSM

• Fundamental hypothesis:

– all the FSMs change state together (synchronicity)

• System state = Cartesian product of component states

– (state explosion may be a problem...)

• E.g. seat belt control + timer

0

1 2 3 4

56789

START_TIMER =>

START_TIMER =>

SEC =>

SEC =>
END_10_SEC

SEC => SEC =>
SEC =>
END_5_SEC

SEC =>SEC =>SEC =>SEC =>

EE249Fall12
14

FSM Composition

OFF, 0 WAIT, 1

KEY_ON and START_TIMER =>
START_TIMER must be coherent

WAIT, 2

SEC and
not (KEY_OFF or BELT_ON) =>

OFF, 1

not SEC and
(KEY_OFF or BELT_ON) =>

OFF, 2

SEC and
(KEY_OFF or BELT_ON) =>

Belt

Control
Timer

EE249Fall12
15

FSM Composition

Given

M1 = (I1, O1, S1, r1,  and

M2 = (I2, O2, S2, r2,  

Find the composition

M = (I, O, S, r, 

given a set of constraints of the form:

C = { (o, i1, … , in) : o is connected to i1, … , in }

EE249Fall12
16

FSM Composition

• Unconditional product M’ = (I’, O’, S’, r’, ’’)
– I’ = I1 U I2
– O’ = O1 U O2

– S’ = S1 x S2

– r’ = r1 x r2

’ = { (A1, A2, s1, s2, t1, t2) : (A1, s1, t1)   and
(A2, s2, t2)   

’ = { (A1, A2, s1, s2, B1, B2) : (A1, s1, B1)   and
(A2, s2, B2)   

• Note:
– A1  I1, A2  I2, B1  O1, B2  O2

– 2X U Y = 2X x 2Y

EE249Fall12
17

FSM Composition

• Constraint application
= { (A1, A2, s1, s2, B1, B2)  ’ : for all (o, i1, … , in)  C o  B1 U B2 if

and only if ij  A1 U A2 for all j }

• The application of the constraint rules out the cases where the
connected input and output have different values (present/absent).

EE249Fall12
18

I = I1 I2

O = O1 O2

S = S1  S2

Assume that
o1 O1, i3 I2, o1 = i3 (communication)

and are such that, e.g., for each pair:

1({ i1 }, s1) = t1, 1({ i1 }, s1) = { o1 }

2({ i2, i3 }, s2) = t2, 2({ i2 , i3 }, s2) = { o2 }

we have:

({ i1, i2, i3 }, (s1, s2)) = (t1, t2)

({ i1, i2, i3 }, (s1, s2)) = { o1, o2 }

i.e. i3 is in input pattern iff o2 is in output pattern

FSM Composition

FSM1 FSM2

i1 i2

i3o1

o2

EE249Fall12
19

• Problem: what if there is a cycle?

– Moore machine:  depends on input and state,  only on state
composition is always well-defined

– Mealy machine:  and  depend on input and state
composition may be undefined
what if 1({ i1 }, s1) = { o1 } but o2  2({ i3 }, s2) ?

• Causality analysis in Mealy FSMs (Berry ‘98)

FSM Composition

FSM1 FSM2

i1 i3o1 o2

EE249Fall12
20

Moore vs. Mealy

• Theoretically, same computational power (almost)

• In practice, different characteristics

• Moore machines:

– non-reactive
(response delayed by 1 cycle)

– easy to compose
(always well-defined)

– good for implementation

– software is always “slow”

– hardware is better when I/O is latched

EE249Fall12
21

Moore vs. Mealy

• Mealy machines:

– reactive
(0 response time)

– hard to compose
(problem with combinational cycles)

– problematic for implementation

– software must be “fast enough”
(synchronous hypothesis)

– may be needed in hardware, for speed

EE249Fall12
22

Hierarchical FSM models

• Problem: how to reduce the size of the representation?

• Harel’s classical papers on StateCharts (language) and bounded
concurrency (model): 3 orthogonal exponential reductions

• Hierarchy:

– state a “encloses” an FSM

– being in a means FSM in a is active

– states of a are called OR states

– used to model pre-emption and exceptions

• Concurrency:

– two or more FSMs are simultaneously active

– states are called AND states

• Non-determinism:

– used to abstract behavior

error

a

recovery

odd

even

done

a1 a2

EE249Fall12
23

The Nokia 3120 User Interface

Keypad Events
Controller

Control software

EE249Fall12
24

Controller description: Denotational

• The controller is denoted by a set of traces of symbols from an
alphabet

• Non all-capital letters names belong to the alphabet of a process
• Capital letters names denote processes (CTRL is the controller

process)
• A process is a letter followed by a process: P = x  Q
• SKIP is a process that successfully completes execution (it does

nothing, it just completes the execution)
• If P and Q are processes then Z = P ; Q is a process that behaves like

P until it completes and then like Q
• *P is a finite number of repetition of process P

EE249Fall06
25

Controller description: Denotational
To lock or unlock a Nokia phone press “Menu” followed by the Star key

Process Letter of the alphabet Successful

Once unlocked, pick something from the menu and perform some action (for
instance, choose “Contacts->Find->Alberto) and perform the action “Call”

Sequential composition

A complete operation is an unlock followed by a selection followed by a lock

A controller is a finite (the phone breaks at some point) sequences of operations

EE249Fall06
26

Controller description: Denotational Implicit
A tuple is the mathematical object that denotes the controller

These two functions
encode the possible traces

Example: To describe the
unlock sequence

EE249Fall06
27

Controller Description: Operational
State transition graph

An operational description is
“explicit” in the sense that it
defines:

• The meaning of
enabled transitions,
events etc.
• What happens when a
transitions is enabled
• How a state transitions
is accomplished

EE249Fall06
28

Composition with synchronization labels
The Lock/Unlock FSM

The Phone is
executing the
requested service

Event
notification

EE249Fall06
29

An example of service
The Select Contacts FSM

Coming from
The lock/unlock FSM

In service: the
phone cannot
be locked

EE249Fall06
30

Communication by synchronization

Lock/Unlock Select contacts

Transitions with same synchronization labels must happen “simultaneously”

Operation of composition
(cross product)

EE249Fall12
31

StateCharts: a Language to Capture FSMs

• An extension of conventional FSMs

• Conventional FSMs are inappropriate for the behavioral description of
complex control

– flat and unstructured

– inherently sequential in nature

• StateCharts supports repeated decomposition of states into sub-states in an
AND/OR fashion, combined with a synchronous (instantaneous broadcast)
communication mechanism

EE249Fall12
32

State Decomposition

• OR-States have sub-states that are related to each other by
exclusive-or

• AND-States have orthogonal state components (synchronous
FSM composition)

– AND-decomposition can be carried out on any level of states (more
convenient than allowing only one level of communicating FSMs)

• Basic States have no sub-states (bottom of hierarchy)

• Root State : no parent states (top of hierarchy)

EE249Fall12
33

StateChart OR-decomposition

S

V

T

S

V

T

f

f

f

e

h

e

h

g g

To be in state U the system must
be either in state S or in state T

U

EE249Fall12
34

StateChart AND-decomposition

V,W

V.Y
V,Z

V

W

X

X,Y

X,W

X.Z

R

Q

Z

Y

U

RQ

S T
k

e

e

e

k
To be in state U the system
must be both in states S and T

EE249Fall12
35

StateCharts Syntax

• The general syntax of an expression labeling a transition in a StateChart is
e[c]/a ,where

– e is the event that triggers the transition

– c is the condition that guards the transition
(cannot be taken unless c is true when e occurs)

– a is the action that is carried out if and when the transition is taken

• For each transition label:

– event condition and action are optional

– an event can be the changing of a value

– standard comparisons are allowed as conditions and assignment statements as
actions

EE249Fall12
36

StateCharts Actions and Events

• An action a on the edge leaving a state may also appear as an event
triggering a transition going into an orthogonal state:

– a state transition broadcasts an event visible immediately to all other
FSMs, that can make transitions immediately and so on

– executing the first transition will immediately cause the second transition
to be taken simultaneously

• Actions and events may be associated to the execution of orthogonal
components : start(A) , stopped(B)

EE249Fall12
37

Graphical Hierarchical FSM Languages

• Multitude of commercial and non-commercial variants:

– StateCharts, UML, StateFlow, …

• Easy to use for control-dominated systems

• Simulation (animated), SW and HW synthesis

• Original StateCharts have problems with causality loops and
instantaneous events:

– circular dependencies can lead to paradoxes

– behavior is implementation-dependent

– not a truly synchronous language

• Hierarchical states necessary for complex reactive system
specification

EE249Fall12
38

Synchronous vs. Asynchronous FSMs

• Synchronous (Esterel, StateCharts):

– communication by shared variables that are read and written in zero
time

– communication and computation happens instantaneously at
discrete time instants

– all FSMs make a transition simultaneously (lock-step)

– may be difficult to implement

– multi-rate specifications

– distributed/heterogeneous architectures

EE249Fall12
39

Synchronous vs. Asynchronous FSMs

• A-synchronous FSMs:

– free to proceed independently

– do not execute a transition at the same time (except for CSP
rendezvous)

– may need to share notion of time: synchronization

– easy to implement

EE249Fall12
40

Asynchronous communication

• Blocking vs. non-Blocking

– Blocking read

– process can not test for emptiness of input

– must wait for input to arrive before proceed

– Blocking write

– process must wait for successful write before continue

– blocking write/blocking read (CSP, CCS)

– non-blocking write/blocking read (FIFO, CFSMs, SDL)

– non-blocking write/non-blocking read (shared variables)

A B

EE249Fall12
41

Asynchronous communication

• Buffers used to adapt when sender and receiver have different
rate
– what size?

• Lossless vs. lossy
– events/tokens may be lost

– bounded memory: overflow or overwriting

– need to block the sender

• Single vs. multiple read
– result of each write can be read at most once or several times

A B

EE249Fall12
42

Communication Mechanisms

• Rendez-Vous (CSP)

– No space is allocated for the data, processes need to synchronize in
some specific points to exchange data

– Read and write occur simultaneously

• FIFO

– Bounded (ECFSMs, CFSMs)

– Unbounded (SDL, ACFSMs, Kahn Process Networks, Petri Nets)

• Shared memory

– Multiple non-destructive reads are possible

– Writes delete previously stored data

EE249Fall12
43

Communication models

Unsynchronized

Read-Modify-write

Unbounded FIFO

Bounded FIFO

Single Rendezvous

Multiple Rendezvous

Transmitters

many

many

one

one

one

many

Receivers

many

many

one

one

one

many

Buffer
Size

one

one

unbounded

bounded

one

one

Blocking
Reads

no

yes

yes

no

yes

no

Blocking
Writes

no

yes

no

maybe

yes

no

Single
Reads

no

no

yes

yes

yes

yes

EE249Fall12
44

Outline

• Part 3: Models of Computation

– FSMs

– Discrete Event Systems

– CFSMs

– Data Flow Models

– Petri Nets

– The Tagged Signal Model

EE249Fall12
45

Discrete Event

• Explicit notion of time (global order…)

• Events can happen at any time asynchronously

• As soon as an input appears at a block, it may be executed

• The execution may take non zero time, the output is marked with
a time that is the sum of the arrival time plus the execution time

• Time determines the order with which events are processed

• DE simulator maintains a global event queue (Verilog and
VHDL)

• Drawbacks

– global event queue => tight coordination between parts

– Simultaneous events => non-deterministic behavior

– Some simulators use delta delay to prevent non-determinacy

EE249Fall12
46

Simultaneous Events in DE

A B C
t

t

Fire B or C?

A B C

t

A B C

t

t

B has 0 delay B has delta delay

Fire C once? or twice?

t+

Fire C twice.

Still have problem with 0-delay
(causality) loop

Can be refined

E.g. introduce timing constraints

(minimum reaction time 0.1 s)

EE249Fall12
47

Outline

• Part 3: Models of Computation

– FSMs

– Discrete Event Systems

– CFSMs

– Data Flow Models

– Petri Nets

– The Tagged Signal Model

EE249Fall12
48

Co-Design Finite State Machines:
Combining FSM and Discrete Event

• Synchrony and asynchrony

• CFSM definitions

– Signals & networks

– Timing behavior

– Functional behavior

• CFSM & process networks

• Example of CFSM behaviors

– Equivalent classes

EE249Fall12
49

Codesign Finite State Machine

• Underlying MOC of Polis and VCC

• Combine aspects from several other MOCs

• Preserve formality and efficiency in implementation

• Mix

– synchronicity

– zero and infinite time

– asynchronicity

– non-zero, finite, and bounded time

• Embedded systems often contain both aspects

EE249Fall12
50

Synchrony: Basic Operation

• Synchrony is often implemented with clocks

• At clock ticks

– Module reads inputs, computes, and produce output

– All synchronous events happen simultaneously

– Zero-delay computations

• Between clock ticks

– Infinite amount of time passed

EE249Fall12
51

Synchrony: Basic Operation (2)

• Practical implementation of synchrony

– Impossible to get zero or infinite delay

– Require: computation time <<< clock period

– Computation time = 0, w.r.t. reaction time of environment

• Features of synchrony

– Functional behavior independent of timing

– Simplify verification

– Cyclic dependencies may cause problem

– Among (simultaneous) synchronous events

EE249Fall12
52

Synchrony:
System Solution

• System solution

– Output reaction to a set of inputs

• Well-designed system:

– Is completely specified and functional

– Has an unique solution at each clock tick

– Is equivalent to a single FSM

– Allows efficient analysis and verification

• Well-designed-ness

– May need to be checked for each design (Esterel)

– Problematic when cyclic dependency among simultaneous events

EE249Fall12
53

Synchrony:
Implementation Cost

• Must verify synchronous assumption on final design

– May be expensive

• Examples:

– Hardware

– Clock cycle > maximum computation time

– Inefficient for average case

– Software

– Process must finish computation before

– New input arrival

– Another process needs to start computation

EE249Fall12
54

Pure Asynchrony:
Basic Operation

• Events are never simultaneous

– No two events with different labels occur at the same time

• Computation starts at a change of the input

• Delays are arbitrary, but bounded

• Each module is triggered to run at a change of input

• No a priori ordering among triggered modules

– May be imposed by scheduling at implementation

EE249Fall12
55

Asynchrony:
System Solution

• Behavior strongly dependent on input timing

• At the implementation level:

– Events may “appear” simultaneous

– Difficult/expensive to maintain total ordering

– Ordering at implementation decides behavior

– Becomes DE, with the same pitfalls

EE249Fall12
56

Asynchrony:
Implementation Cost

• Achieve low computation time (average)

– Different parts of the system compute at different rates

• Analysis is difficult

– Behavior depends on timing

– Maybe be easier for designs that are insensitive to

– Internal delay

– External timing

EE249Fall12
57

Asynchrony vs. Synchrony in System Design

• They are different at least in terms of

– Event buffering

– Timing of event read/write

• Asynchrony

– Explicit buffering of events for each module

– Buffer size may be unknown at start-time

• Synchrony

– One global copy of event

– Same start time for all modules

EE249Fall12
58

Combining
Synchrony and Asynchrony

• Wants to combine

– Flexibility of asynchrony

– Verifiability of synchrony

• Asynchrony

– Globally, a timing independent style of thinking

• Synchrony

– Local portion of design are often tightly synchronized

• Globally asynchronous, locally synchronous

– CFSM networks

EE249Fall12
59

CFSM Overview

• CFSM is FSM extended with

– Support for data handling

– Asynchronous communication

• CFSM has

– FSM part

– Inputs, outputs, states, transition and output relation

– Data computation part

– External, instantaneous functions

EE249Fall12
60

CFSM Overview (2)

• CFSM has:

– Locally synchronous behavior

– CFSM executes based on snap-shot input assignment

– Synchronous from its own perspective

– Globally asynchronous behavior

– CFSM executes in non-zero, finite amount of time

– Asynchronous from system perspective

• GALS model

– Globally: Scheduling mechanism

– Locally: CFSMs

EE249Fall12

Network of CFSMs: Depth-1 Buffers

• Globally Asynchronous, Locally Synchronous (GALS) model

CFSM2

CFSM3

C=>G

CFSM1

C=>F
B=>C

F^(G==1)

(A==0)=>B

C=>ACFSM1 CFSM2

C=>B

F

G

C
C

B
A

C=>G

C=>B

EE249Fall12
62

Introducing a CFSM

• A Finite State Machine

• Input events, output events and state events

• Initial values (for state events)

• A transition function

Transitions may involve complex, memory-less, instantaneous
arithmetic and/or Boolean functions

All the state of the system is under form of events

• Need rules that define the CFSM behavior

EE249Fall12
63

CFSM Rules: phases

• Four-phase cycle:

 Idle

 Detect input events

 Execute one transition

 Emit output events

• Discrete time

– Sufficiently accurate for synchronous systems

– Feasible formal verification

• Model semantics: Timed Traces i.e. sequences of events
labeled by time of occurrence

EE249Fall12
64

CFSM Rules: phases

• Implicit unbounded delay between phases

• Non-zero reaction time

(avoid inconsistencies when interconnected)

• Causal model based on partial order

(global asynchronicity)

– potential verification speed-up

• Phases may not overlap

• Transitions always clear input buffers

(local synchronicity)

EE249Fall12
65

Conclusion

• CFSM

– Delay, and hence detailed behavior, is defined by implementation

– Local synchrony

– Relatively large atomic synchronous entities

– Global asynchrony

– Break synchrony, no compositional problem

– Allow efficient mapping to heterogeneous architectures

