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Models Of Computation for reactive systems

• Main MOCs:
– Communicating Finite State Machines

– Dataflow Process Networks

– Petri Nets

– Discrete Event

– (Abstract) Codesign Finite State Machines

• Main languages:
– StateCharts

– Esterel

– Dataflow networks
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Finite State Machines

• Functional decomposition into states of operation

• Typical domains of application:

– control functions 

– protocols (telecom, computers, ...)

• Different communication mechanisms:

– synchronous 

– (classical FSMs, Moore ‘64,  Kurshan ‘90)

– asynchronous

– (CCS, Milner ‘80; CSP, Hoare ‘85)
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FSM Example

• Informal specification:

– If the driver 

– turns on the key, and

– does not fasten the seat belt within 5 seconds

– then an alarm beeps

– for 5 seconds, or

– until the driver fastens the seat belt, or 

– until the driver turns off the key
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FSM Example

KEY_ON => START_TIMER

END_TIMER_5 => 
ALARM_ON

KEY_OFF or
BELT _ON =>

END_TIMER_10 or
BELT_ON or
KEY_OFF => ALARM_OFF

If no condition is satisfied, implicit self-loop in the current state

WAIT

ALARM

OFF
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FSM Definition
– FSM = ( I, O, S, r, )

– I = { KEY_ON, KEY_OFF,  BELT_ON, END_TIMER_5, 
END_TIMER_10 }

– O = { START_TIMER, ALARM_ON, ALARM_OFF }

– S = { OFF, WAIT, ALARM }

– r = OFF

 : 2I  S S 
e.g. ( { KEY_OFF }, WAIT ) = OFF

: 2I  S O

e.g. ( { KEY_ON }, OFF ) = { START_TIMER }

Set of all subsets of I (implicit “and”)

All other inputs are implicitly absent
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Non-deterministic FSMs

 and may be relations  instead of  functions:

 2I  S  S 

e.g. ({KEY_OFF, END_TIMER_5}, WAIT) = {{OFF}, {ALARM}}

 2I  S  2O

• Non-determinism can be used to describe:

– an unspecified behavior
(incomplete specification)

– an unknown behavior
(environment modeling)

implicit “and” implicit “or”
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• E.g. error checking first partially specified:

• Then completed as even parity:

NDFSM: incomplete specification

BIT or not BIT => BIT or not BIT => BIT or not BIT => ERR

BIT or not BIT =>
...

SYNC =>

BIT =>

not BIT =>

not BIT => ERR
...

SYNC =>

not BIT =>

...not BIT =>

BIT =>

not BIT =>

BIT =>

BIT => 

BIT => ERR 

0 1 7 8

p1 p7

d7d10 8
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NDFSM: unknown behavior

• Modeling the environment

• Useful to:
– optimize (don’t care conditions)

– verify (exclude impossible cases)

• E.g. driver model:

• Can be refined
– E.g. introduce timing constraints

– (minimum reaction time 0.1 s)

s0

=> KEY_ON or 
KEY_OFF  or
BELT_ON
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NDFSM: time range

• Special case of unspecified/unknown behavior, but so common 
to deserve special treatment for efficiency

• E.g. delay between 6 and 10 s

0

1 2 3 4

5

6

78

9

START => SEC =>

SEC => END

SEC => SEC =>

SEC =>

SEC =>

SEC =>
SEC =>

SEC =>

START =>

SEC => 
END

SEC => END

SEC => 
END
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NDFSMs and FSMs

• Formally FSMs and NDFSMs are equivalent 

– (Rabin-Scott construction, Rabin ‘59)

• In practice, NDFSMs are often more compact

– (exponential blowup for determinization)

s1

s2 s3

s1

s2,s3

a
a

b

a

c a

s3
b

a

s2

c

ba

s1,s3
c

a

c
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Finite State Machines

• Advantages:

– Easy to use (graphical languages)

– Powerful algorithms for

– synthesis (SW and HW)

– verification

• Disadvantages:

– Sometimes over-specify implementation

– (sequencing is fully specified)

– Number of states can be unmanageable

– Numerical computations cannot be specified compactly (need 
Extended FSMs)
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Modeling Concurrency

• Need to compose parts described by FSMs

• Describe the system using a number of FSMs and interconnect 
them

• How do the interconnected FSMs talk to each other?
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FSM Composition

• Bridle complexity via hierarchy: FSM product yields an FSM

• Fundamental hypothesis: 

– all the FSMs change state together (synchronicity)

• System state = Cartesian product of component states

– (state explosion may be a problem...)

• E.g. seat belt control + timer

0

1 2 3 4

56789

START_TIMER =>

START_TIMER =>

SEC =>

SEC => 
END_10_SEC

SEC => SEC =>
SEC =>
END_5_SEC

SEC =>SEC =>SEC =>SEC =>
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FSM Composition

OFF, 0 WAIT, 1

KEY_ON and START_TIMER => 
START_TIMER must be coherent

WAIT, 2

SEC and 
not (KEY_OFF or BELT_ON) =>

OFF, 1

not SEC and 
(KEY_OFF or BELT_ON) =>

OFF, 2

SEC and 
(KEY_OFF or BELT_ON) =>

Belt

Control
Timer
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FSM Composition

Given 

M1 = ( I1, O1, S1, r1,  and 

M2 = ( I2, O2, S2, r2,  

Find the composition

M = ( I, O, S, r, 

given a set of constraints of the form:

C = { ( o, i1, … , in ) : o is connected to i1, … , in }
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FSM Composition

• Unconditional product M’ = ( I’, O’, S’, r’, ’’ )
– I’ = I1 U I2
– O’ = O1 U O2

– S’ = S1 x S2

– r’ = r1 x r2

’ = { ( A1, A2, s1, s2, t1, t2 ) :  ( A1, s1, t1 )   and                                     
( A2, s2, t2 )   

’ = { ( A1, A2, s1, s2, B1, B2 ) :  ( A1, s1, B1 )   and                                        
( A2, s2, B2 )   

• Note:
– A1  I1,  A2  I2,  B1  O1,  B2  O2

– 2X U Y = 2X x 2Y
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FSM Composition

• Constraint application
= { ( A1, A2, s1, s2, B1, B2 )  ’ : for all ( o, i1, … , in )  C      o  B1 U B2 if 

and only if   ij  A1 U A2 for all j }

• The application of the constraint rules out the cases where the 
connected input and output have different values (present/absent).
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I = I1 I2 

O = O1 O2

S = S1  S2

Assume that 
o1 O1, i3 I2, o1 = i3 (communication)

and are such that, e.g., for each pair:

1( { i1 }, s1 ) = t1,    1( { i1 }, s1 ) = { o1 }

2( { i2, i3 }, s2 ) = t2,    2( { i2 , i3 }, s2 ) = { o2 }

we have:

( { i1, i2, i3 }, ( s1, s2 ) ) = ( t1, t2 )

( { i1, i2, i3 }, ( s1, s2 ) ) = { o1, o2 }

i.e. i3 is in input pattern iff o2 is in output pattern

FSM Composition

FSM1 FSM2

i1 i2

i3o1

o2
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• Problem: what if there is a cycle?

– Moore machine:  depends on input and state,  only on state
composition is always well-defined

– Mealy machine:  and  depend on input and state 
composition may be undefined
what if 1( { i1 }, s1) = { o1 } but o2  2( { i3 }, s2 ) ?

• Causality analysis in Mealy FSMs (Berry ‘98)

FSM Composition

FSM1 FSM2

i1 i3o1 o2



EE249Fall12
20

Moore vs. Mealy

• Theoretically, same computational power (almost)

• In practice, different characteristics

• Moore machines:

– non-reactive 
(response delayed by 1 cycle)

– easy to compose 
(always well-defined)

– good for implementation

– software is always “slow”

– hardware is better when I/O is latched
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Moore vs. Mealy

• Mealy machines:

– reactive 
(0 response time)

– hard to compose 
(problem with combinational cycles)

– problematic for implementation

– software must be “fast enough” 
(synchronous hypothesis)

– may be needed in hardware, for speed
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Hierarchical FSM models

• Problem: how to reduce the size of the representation? 

• Harel’s classical papers on StateCharts (language) and bounded 
concurrency (model): 3 orthogonal exponential reductions

• Hierarchy:

– state a “encloses” an FSM

– being in a means  FSM in a is active

– states of a are called OR states

– used to model pre-emption and exceptions

• Concurrency: 

– two or more FSMs are simultaneously active

– states are called AND states

• Non-determinism:

– used to abstract behavior

error

a

recovery

odd

even

done

a1 a2
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The Nokia 3120 User Interface

Keypad Events
Controller

Control software
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Controller description: Denotational

• The controller is denoted by a set of traces of symbols from an 
alphabet

• Non all-capital letters names belong to the alphabet of a process
• Capital letters names denote processes ( CTRL is the controller 

process)
• A process is a letter followed by a process: P = x  Q
• SKIP is a process that successfully completes execution (it does 

nothing, it just completes the execution)
• If P and Q are processes then Z = P ; Q is a process that behaves like 

P until it completes and then like Q
• *P is a finite number of repetition of process P
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Controller description: Denotational
To lock or unlock a Nokia phone press “Menu” followed by the Star key

Process Letter of the alphabet Successful

Once unlocked, pick something from the menu and perform some action (for 
instance, choose “Contacts->Find->Alberto) and perform the action “Call”

Sequential composition

A complete operation is an unlock followed by a selection followed by a lock

A controller is a finite (the phone breaks at some point) sequences of operations
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Controller description: Denotational Implicit
A tuple is the mathematical object that denotes the controller

These two functions 
encode the possible traces

Example: To describe the 
unlock sequence
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Controller Description: Operational 
State transition graph

An operational description is 
“explicit” in the sense that it  
defines:

• The meaning of 
enabled   transitions, 
events etc.
• What happens when a 
transitions is enabled
• How a state transitions 
is accomplished
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Composition with synchronization labels
The Lock/Unlock FSM

The Phone is 
executing the 
requested service

Event 
notification
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An example of service
The Select Contacts FSM

Coming from
The lock/unlock FSM

In service: the 
phone cannot 
be locked
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Communication by synchronization

Lock/Unlock Select contacts

Transitions with same synchronization labels must happen “simultaneously”

Operation of composition
(cross product)
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StateCharts: a Language to Capture FSMs

• An extension of conventional FSMs

• Conventional FSMs are inappropriate for the behavioral description of 
complex control

– flat and unstructured

– inherently sequential in nature

• StateCharts supports repeated decomposition of states into sub-states in an 
AND/OR fashion, combined with a synchronous (instantaneous broadcast) 
communication mechanism 
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State Decomposition

• OR-States have sub-states that are related to each other by 
exclusive-or

• AND-States have orthogonal state components (synchronous 
FSM composition)

– AND-decomposition can be carried out on any level of states (more 
convenient than allowing only one level of communicating FSMs)

• Basic States have no sub-states (bottom of hierarchy)

• Root State : no parent states (top of hierarchy) 
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StateChart OR-decomposition

S

V

T

S

V

T

f

f

f

e

h

e

h

g g

To be  in state U the system must
be either in state S or in state T

U
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StateChart AND-decomposition

V,W

V.Y
V,Z

V

W

X

X,Y

X,W

X.Z

R

Q

Z

Y

U

RQ

S T
k

e

e

e

k
To be  in state U the system 
must be both in states S and T
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StateCharts Syntax

• The general syntax of an expression labeling a transition in a StateChart is   
e[c]/a ,where 

– e is the event that triggers the transition

– c is the condition that guards the transition 
(cannot be taken unless c is true when e occurs)

– a is  the action that is carried out if and when the transition is taken

• For each transition label:

– event condition and action are optional

– an event can be the changing of a value

– standard comparisons are allowed as conditions and assignment statements as 
actions
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StateCharts Actions and Events

• An action a on the edge leaving a state may also appear as an event 
triggering a transition going into an orthogonal state: 

– a state transition broadcasts an event visible immediately to all other 
FSMs, that can make transitions immediately and so on

– executing the first transition will immediately cause the second transition 
to be taken simultaneously

• Actions and events may be associated to the execution of orthogonal 
components : start(A) , stopped(B)
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Graphical Hierarchical FSM Languages

• Multitude of commercial and non-commercial variants:

– StateCharts, UML, StateFlow, …

• Easy to use for control-dominated systems

• Simulation (animated), SW and HW synthesis

• Original StateCharts have problems with causality loops and 
instantaneous events:

– circular dependencies can lead to paradoxes

– behavior is implementation-dependent 

– not a truly synchronous language

• Hierarchical states necessary for complex reactive system 
specification
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Synchronous vs. Asynchronous FSMs

• Synchronous (Esterel, StateCharts): 

– communication by shared variables that are read and written in zero 
time

– communication and computation happens instantaneously at 
discrete time instants

– all FSMs make a transition simultaneously (lock-step)

– may be difficult to implement 

– multi-rate specifications 

– distributed/heterogeneous architectures
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Synchronous vs. Asynchronous FSMs

• A-synchronous FSMs:

– free to proceed independently

– do not execute a transition at the same time (except for CSP 
rendezvous)

– may need to share notion of time: synchronization

– easy to implement
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Asynchronous communication

• Blocking vs. non-Blocking

– Blocking read

– process can not test for emptiness of input

– must wait for input to arrive before proceed

– Blocking write

– process must wait for successful write before continue 

– blocking write/blocking read (CSP, CCS)

– non-blocking write/blocking read (FIFO, CFSMs, SDL)

– non-blocking write/non-blocking read (shared variables)

A B
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Asynchronous communication 

• Buffers used to adapt when sender and receiver have different 
rate
– what size?

• Lossless vs. lossy
– events/tokens may be lost

– bounded memory: overflow or overwriting

– need to block the sender

• Single vs. multiple read
– result of each write can be read at most once or several times

A B
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Communication Mechanisms

• Rendez-Vous (CSP)

– No space is allocated for the data, processes need to synchronize in 
some specific points to exchange data

– Read and write occur simultaneously

• FIFO 

– Bounded (ECFSMs, CFSMs)

– Unbounded (SDL, ACFSMs, Kahn Process Networks, Petri Nets)

• Shared memory

– Multiple non-destructive reads are possible

– Writes delete previously stored data
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Communication models

Unsynchronized

Read-Modify-write

Unbounded FIFO

Bounded FIFO

Single Rendezvous

Multiple Rendezvous

Transmitters

many

many

one

one

one

many

Receivers

many

many

one

one

one

many

Buffer
Size

one

one

unbounded

bounded

one

one

Blocking 
Reads

no

yes

yes

no

yes

no

Blocking 
Writes

no

yes

no

maybe

yes

no

Single
Reads

no

no

yes

yes

yes

yes
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Outline

• Part 3: Models of Computation

– FSMs

– Discrete Event Systems 

– CFSMs

– Data Flow Models

– Petri Nets 

– The Tagged Signal Model



EE249Fall12
45

Discrete Event

• Explicit notion of time (global order…)

• Events can happen at any time asynchronously

• As soon as an input appears at a block, it may be executed

• The execution may take non zero time, the output is marked with 
a time that is the sum of the arrival time plus the execution time

• Time determines the order with which events are processed

• DE simulator maintains a global event queue (Verilog and 
VHDL)

• Drawbacks

– global event queue => tight coordination between parts

– Simultaneous events => non-deterministic behavior

– Some simulators use delta delay to prevent non-determinacy
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Simultaneous Events in DE 

A B C
t

t

Fire B or C?

A B C

t

A B C

t

t

B has 0 delay B has delta delay

Fire C once? or twice?

t+

Fire C twice.

Still have problem with 0-delay 
(causality) loop

Can be refined

E.g. introduce timing constraints

(minimum reaction time 0.1 s)
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Outline

• Part 3: Models of Computation

– FSMs

– Discrete Event Systems 

– CFSMs

– Data Flow Models

– Petri Nets 

– The Tagged Signal Model
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Co-Design Finite State Machines:
Combining FSM and Discrete Event

• Synchrony and asynchrony

• CFSM definitions

– Signals & networks

– Timing behavior

– Functional behavior

• CFSM & process networks

• Example of CFSM behaviors

– Equivalent classes
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Codesign Finite State Machine

• Underlying MOC of Polis and VCC

• Combine aspects from several other MOCs

• Preserve formality and efficiency in implementation

• Mix 

– synchronicity

– zero and infinite time

– asynchronicity

– non-zero, finite, and bounded time

• Embedded systems often contain both aspects
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Synchrony: Basic Operation

• Synchrony is often implemented with clocks

• At clock ticks

– Module reads inputs, computes, and produce output

– All synchronous events happen simultaneously

– Zero-delay computations

• Between clock ticks

– Infinite amount of time passed
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Synchrony: Basic Operation (2)

• Practical implementation of synchrony

– Impossible to get zero or infinite delay

– Require:  computation time <<< clock period

– Computation time = 0, w.r.t. reaction time of environment

• Features of synchrony

– Functional behavior independent of timing

– Simplify verification

– Cyclic dependencies may cause problem

– Among (simultaneous) synchronous events
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Synchrony: 
System Solution

• System solution

– Output reaction to a set of inputs

• Well-designed system:

– Is completely specified and functional

– Has an unique solution at each clock tick

– Is equivalent to a single FSM

– Allows efficient analysis and verification

• Well-designed-ness 

– May need to be checked for each design (Esterel)

– Problematic when cyclic dependency among simultaneous events 
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Synchrony: 
Implementation Cost

• Must verify synchronous assumption on final design

– May be expensive

• Examples:

– Hardware

– Clock cycle > maximum computation time

– Inefficient for average case

– Software 

– Process must finish computation before

– New input arrival

– Another process needs to start computation
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Pure Asynchrony: 
Basic Operation

• Events are never simultaneous

– No two events with different labels occur at the same time

• Computation starts at a change of the input

• Delays are arbitrary, but bounded

• Each module is triggered to run at a change of input

• No a priori ordering among triggered modules

– May be imposed by scheduling at implementation
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Asynchrony: 
System Solution

• Behavior strongly dependent on input timing

• At the implementation level:

– Events may “appear” simultaneous

– Difficult/expensive to maintain total ordering

– Ordering at implementation decides behavior

– Becomes DE, with the same pitfalls



EE249Fall12
56

Asynchrony: 
Implementation Cost

• Achieve low computation time (average)

– Different parts of the system compute at different rates

• Analysis is difficult

– Behavior depends on timing

– Maybe be easier for designs that are insensitive to 

– Internal delay

– External timing
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Asynchrony vs. Synchrony in System Design

• They are different at least in terms of

– Event buffering

– Timing of event read/write

• Asynchrony

– Explicit buffering of events for each module

– Buffer size may be unknown at start-time

• Synchrony

– One global copy of event

– Same start time for all modules
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Combining 
Synchrony and Asynchrony

• Wants to combine

– Flexibility of asynchrony 

– Verifiability of synchrony 

• Asynchrony

– Globally, a timing independent style of thinking 

• Synchrony

– Local portion of design are often tightly synchronized

• Globally asynchronous, locally synchronous

– CFSM networks
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CFSM Overview

• CFSM is FSM extended with

– Support for data handling

– Asynchronous communication

• CFSM has

– FSM part

– Inputs, outputs, states, transition and output relation

– Data computation part

– External, instantaneous functions
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CFSM Overview (2)

• CFSM has:

– Locally synchronous behavior

– CFSM executes based on snap-shot input assignment

– Synchronous from its own perspective

– Globally asynchronous behavior

– CFSM executes in non-zero, finite amount of time

– Asynchronous from system perspective

• GALS model

– Globally: Scheduling mechanism

– Locally: CFSMs
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Network of CFSMs: Depth-1 Buffers

• Globally Asynchronous, Locally Synchronous (GALS) model

CFSM2

CFSM3

C=>G

CFSM1

C=>F
B=>C

F^(G==1)

(A==0)=>B

C=>ACFSM1 CFSM2

C=>B

F

G

C
C

B
A

C=>G

C=>B
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Introducing a CFSM

• A Finite State Machine

• Input events, output events and state events

• Initial values (for state events)

• A transition function

Transitions may involve complex, memory-less, instantaneous
arithmetic and/or Boolean functions

All the state of the system is under form of events

• Need rules that define the CFSM behavior
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CFSM Rules: phases

• Four-phase cycle:

 Idle

 Detect input events

 Execute one transition

 Emit output events

• Discrete time

– Sufficiently accurate for synchronous systems

– Feasible formal verification

• Model semantics: Timed Traces i.e. sequences of events 
labeled by time of occurrence
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CFSM Rules: phases

• Implicit unbounded delay between phases

• Non-zero reaction time 

(avoid inconsistencies when interconnected)

• Causal model based on partial order

(global asynchronicity)

– potential verification speed-up

• Phases may not overlap

• Transitions always clear input buffers

(local synchronicity)
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Conclusion

• CFSM

– Delay, and hence detailed behavior, is defined by implementation

– Local synchrony

– Relatively large atomic synchronous entities

– Global asynchrony

– Break synchrony, no compositional problem

– Allow efficient mapping to heterogeneous architectures


