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Petri Nets (PNs) 

• Model introduced by C.A. Petri in 1962 

– Ph.D. Thesis: “Communication with Automata” 

• Applications: distributed computing, manufacturing, control, 

communication networks, transportation…  

• PNs describe explicitly and graphically: 

– sequencing/causality 

– conflict/non-deterministic choice 

– concurrency 

• Basic PN model 

– Asynchronous model (partial ordering) 

– Main drawback: no hierarchy 
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Example:  
Synchronization at single track rail segment 

• "Preconditions“ 
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Playing the “token game“ 
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Conflict for resource “track“ 
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Petri Net Graph 

• Bipartite weighted directed graph: 

– Places: circles 

– Transitions: bars or boxes 

– Arcs: arrows labeled with weights 

• Tokens: black dots 
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Petri Net 

• A PN (N,M0) is a Petri Net Graph N 

– places: represent distributed state by holding tokens 

– marking (state) M is an n-vector (m1,m2,m3…), where mi is the non-negative 

number of tokens in place pi. 

– initial marking (M0) is initial state 

– transitions: represent actions/events 

– enabled transition: enough tokens in predecessors 

– firing transition: modifies marking 

• …and an initial marking M0. 
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Places/Transitions: conditions/events 
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Transition firing rule 

• A marking is changed according to the following rules: 

– A transition is enabled if there are enough tokens in each input place 

– An enabled transition may or may not fire 

– The firing of a transition modifies marking by consuming tokens from the 

input places and producing tokens in the output places 
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Concurrency, causality, choice 
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Communication Protocol 
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Producer-Consumer Problem 
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Producer-Consumer with priority 

Consumer B can  

consume only if  

buffer A is empty 

 

Inhibitor arcs 

A 

B 



35 

PN properties 

• Behavioral: depend on the initial marking (most interesting) 

– Reachability 

– Boundedness 

– Schedulability 

– Liveness 

– Conservation 

• Structural: do not depend on the initial marking   (often too restrictive) 

– Consistency 

– Structural boundedness 
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Reachability 

• Marking M is reachable from marking M0 if there exists a sequence of 

firings s = M0 t1 M1 t2 M2… M that transforms M0 to M. 

• The reachability problem is decidable. 
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• Liveness: from any marking any transition can become fireable 

– Liveness implies deadlock freedom, not viceversa 

Liveness 

Not live 
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• Boundedness: the number of tokens in any place cannot grow 

indefinitely 

– (1-bounded also called safe) 

– Application: places represent buffers and registers (check there is no 

overflow) 

Boundedness 

Unbounded 
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Conservation 

• Conservation: the total number of tokens in the net is 

constant 

Conservative 

2 
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Analysis techniques 

• Structural analysis techniques 

– Incidence matrix 

– T- and S- Invariants 

• State Space Analysis techniques 

– Coverability Tree 

– Reachability Graph 
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Incidence Matrix 

• Necessary condition for marking M to be reachable from initial 

marking M0: 

 there exists firing vector v s.t.: 

  M = M0 + A v 
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State equations 
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• E.g. reachability of M = |0 0 1|T from M0 = |1 0  0|T  

but also v2 = | 1 1 2 |T or any vk = | 1 (k) (k+1) |T 
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Necessary Condition only 

2 
2 

Firing vector: (1,2,2) 

t1 

t2 

t3 

Deadlock!! 
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State equations and invariants 

• Solutions of Ax = 0 (in M = M0 + Ax, M = M0) 

 T-invariants 

– sequences of transitions that (if fireable) bring back to original marking  

– periodic schedule in SDF 

– e.g. x =| 0 1 1 |T 
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Application of T-invariants 

• Scheduling 

– Cyclic schedules: need to return to the initial state 

i *k2 + 

*k1 

Schedule: i *k2 *k1 + o 

T-invariant: (1,1,1,1,1) 

o 
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State equations and invariants 

• Solutions of yA = 0 

 S-invariants 

– sets of places whose weighted total token count does not change after 

the firing of any transition (y M = y M’) 

– e.g.  y =| 1 1 1 |T 
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Application of S-invariants 

• Structural Boundedness: bounded for any finite initial marking 

M0 

• Existence of  a positive S-invariant is sufficient condition for 

structural boundedness  

– initial marking is finite 

– weighted token count does not change 
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Summary of algebraic methods 

• Extremely efficient  

(polynomial in the size of the net) 

• Generally provide only necessary or sufficient information 

• Excellent for ruling out some deadlocks or otherwise 

dangerous conditions 

• Can be used to infer structural boundedness 
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Coverability Tree 

• Build a (finite) tree representation of the markings 

  

 Karp-Miller algorithm 

• Label initial marking M0 as the root of the tree and tag it as new 

• While new markings exist do: 

– select a new marking M 

– if M is identical to a marking on the path from the root to M, then tag M as old and go to 

another new marking 

– if no transitions are enabled at M, tag M dead-end 

– while there exist enabled transitions at M do: 

– obtain the marking M’ that results from firing t at M 

– on the path from the root to M if there exists a marking M’’ such that M’(p)>=M’’(p) for each 

place p and M’ is different from M’’, then replace M’(p) by w for each p such that M’(p) >M’’(p) 

– introduce M’ as a node, draw an arc with label t from M to M’ and tag M’ as new. 
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Coverability Tree 

• Boundedness is decidable with coverability tree 
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Coverability Tree 

• Boundedness is decidable 

 with coverability tree 
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Coverability Tree 

• Is (1) reachable from (0)? 
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Coverability Tree 
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Coverability Tree 

• Is (1) reachable from (0)? 
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Coverability Tree 

• Cannot solve the reachability problem 
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Reachability graph 
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Tree since it contains all possible reachable markings 
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Reachability graph 
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• For bounded nets the Coverability Tree is called Reachability 

Tree since it contains all possible reachable markings 
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Subclasses of Petri nets 

• Reachability analysis is too expensive 

• State equations give only partial information  

• Some properties are preserved by reduction rules 

e.g. for liveness and safeness 

 

 

 

 

• Even reduction rules only work in some cases 

• Must restrict class in order to prove stronger results 
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Marked Graphs 

• Every place has at most 1 predecessor and 1 successor transition 

• Models only causality and concurrency (no conflict) 

NO 

YES 
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State Machines 

• Every transition has at most 1 predecessor and 1 successor place 

• Models only causality and conflict  

– (no concurrency, no synchronization of parallel activities) 

YES NO 
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Free-Choice Petri Nets (FCPN) 

Free-Choice (FC) 

Extended Free-Choice  Confusion (not-Free-Choice) 

t1 

t2 

Free-Choice: the outcome of a choice depends on 

the value of a token  (abstracted non-

deterministically) rather than on its arrival time. 
  

every transition after choice  

has exactly 1 predecessor 

place 
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Free-Choice nets 

• Introduced by Hack (‘72) 

• Extensively studied by Best (‘86) and Desel and Esparza (‘95) 

• Can express concurrency, causality and choice without confusion 

• Very strong structural theory 

– necessary and sufficient conditions for liveness and safeness, based on 
decomposition 

– exploits duality between MG and SM 
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MG (& SM) decomposition 

• An Allocation is a control function that chooses which transition fires 

among several conflicting ones ( A: P     T). 

• Eliminate the subnet that would be inactive if we were to use the 

allocation... 

• Reduction Algorithm 

– Delete all unallocated transitions 

– Delete all places that have all input transitions already deleted 

– Delete all transitions that have at least one input place already deleted 

• Obtain a Reduction (one for each allocation) that is a conflict free subnet 
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• Choose one successor for each conflicting place: 

MG reduction and cover 
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MG reductions 

• The set of all reductions yields a cover of MG components (T-

invariants) 
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MG reductions 

• The set of all reductions yields a cover of MG components (T-

invariants) 
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Hack’s theorem (‘72) 

• Let N be a Free-Choice PN: 

– N has a live and safe initial marking (well-formed)                    

if and only if 

– every MG reduction is strongly connected and not empty, and 

 the set of all reductions covers the net 

– every SM reduction is strongly connected and not empty, and 

 the set of all reductions covers the net 
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Hack’s theorem 

• Example of non-live (but safe) FCN 
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Hack’s theorem 

• Example of non-live (but safe) FCN 

Deadlock 
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Summary of LSFC nets 

• Largest class for which structural theory really helps 

• Structural component analysis may be expensive  

(exponential number of MG and SM components in the worst case) 

• But…  

– number of MG components is generally small 

– FC restriction simplifies characterization of behavior 
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Petri Net extensions 

• Add interpretation to tokens and transitions 

– Colored nets (tokens have value) 

• Add time 

– Time/timed Petri Nets (deterministic delay) 

– type (duration, delay) 

– where (place, transition) 

– Stochastic PNs (probabilistic delay) 

– Generalized Stochastic PNs (timed and immediate transitions) 

• Add hierarchy 

– Place Charts Nets 
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PNs Summary 

• PN Graph: places (buffers), transitions (actions), tokens (data) 

• Firing rule: transition enabled if there are enough tokens in each input 

place  

• Properties 

– Structural (consistency, structural boundedness…) 

– Behavioral (reachability, boundedness, liveness…) 

• Analysis techniques 

– Structural (only CN or CS): State equations, Invariants 

– Behavioral: coverability tree 

• Reachability  

• Subclasses: Marked Graphs, State Machines, Free-Choice PNs 

2 
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