

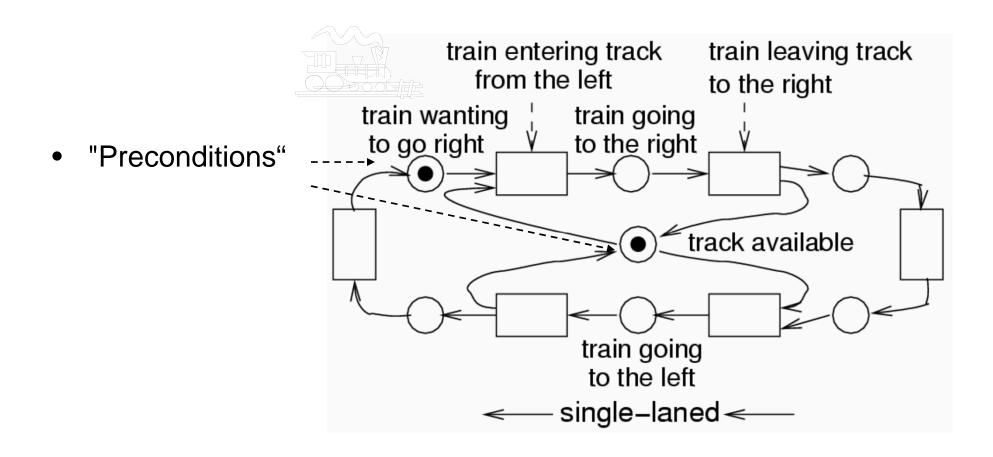
Outline

- Petri nets
 - Introduction
 - Examples
 - Properties
 - Analysis techniques

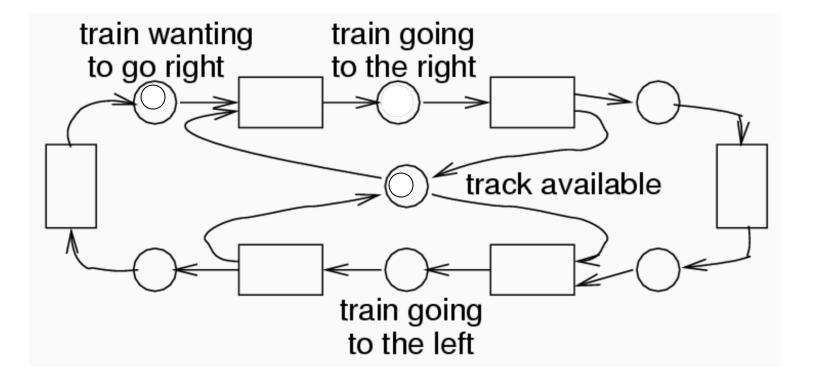
Petri Nets (PNs)

- Model introduced by C.A. Petri in 1962
 - Ph.D. Thesis: "Communication with Automata"
- Applications: distributed computing, manufacturing, control, communication networks, transportation...
- **PNs describe explicitly and graphically:**
 - sequencing/causality
 - conflict/non-deterministic choice
 - concurrency
- Basic PN model
 - Asynchronous model (partial ordering)
 - Main drawback: no hierarchy

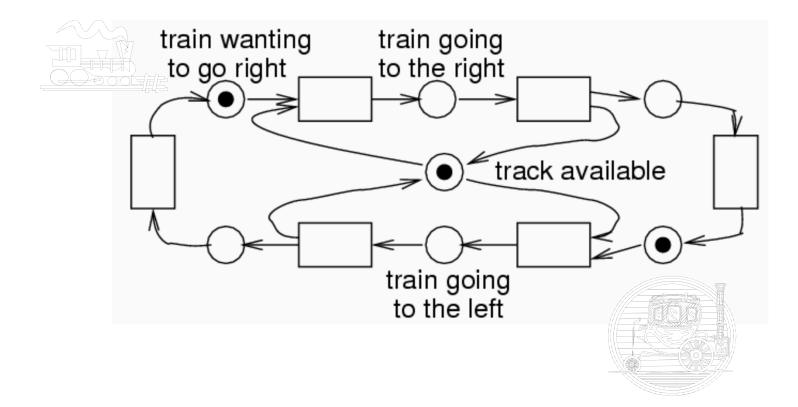
Example: Synchronization at single track rail segment



Playing the "token game"

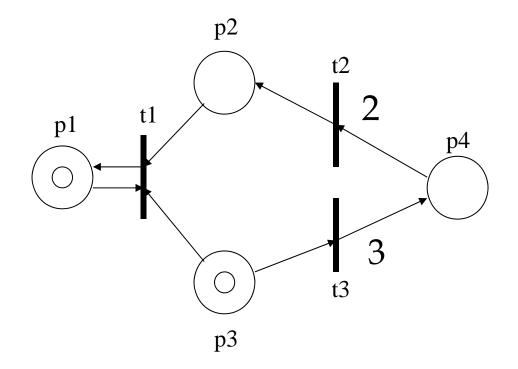


Conflict for resource "track"



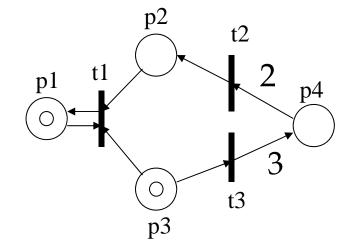
Petri Net Graph

- Bipartite weighted directed graph:
 - Places: circles
 - Transitions: bars or boxes
 - Arcs: arrows labeled with weights
- Tokens: black dots



Petri Net

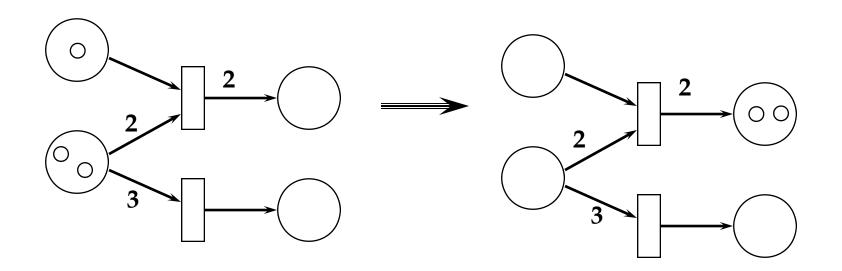
- A PN (N,Mo) is a Petri Net Graph N
 - places: represent distributed state by holding tokens
 - marking (state) M is an n-vector (m₁,m₂,m₃...), where m_i is the non-negative number of tokens in place p_i.
 - initial marking (M₀) is initial state
 - transitions: represent actions/events
 - enabled transition: enough tokens in predecessors
 - firing transition: modifies marking
- ...and an initial marking Mo.

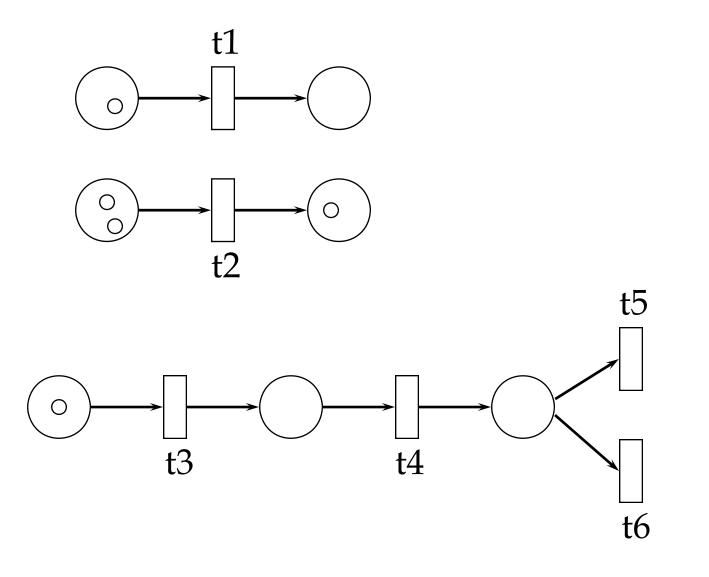


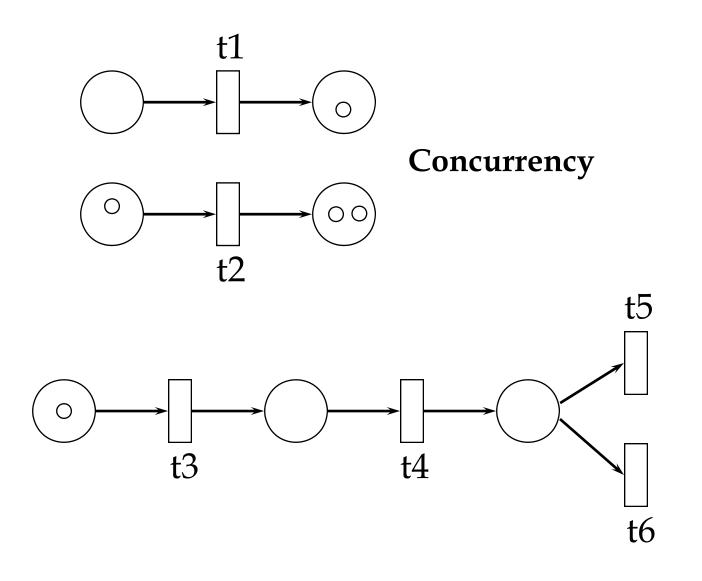
Places/Transitions: conditions/events

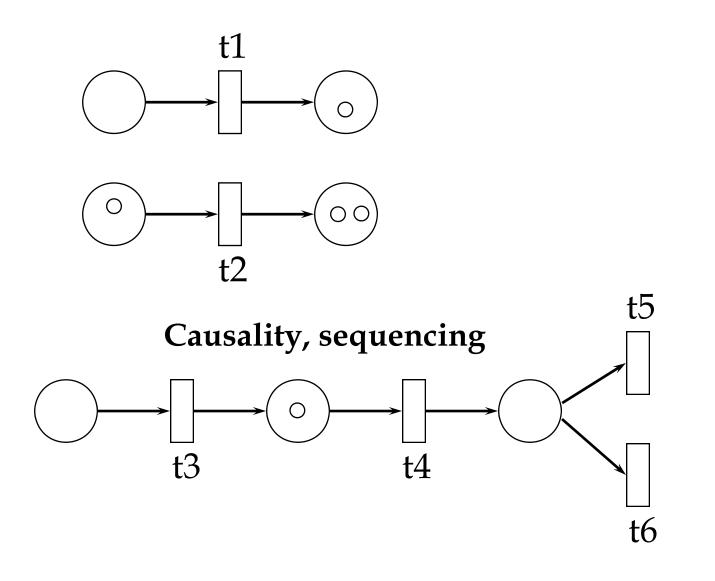
Transition firing rule

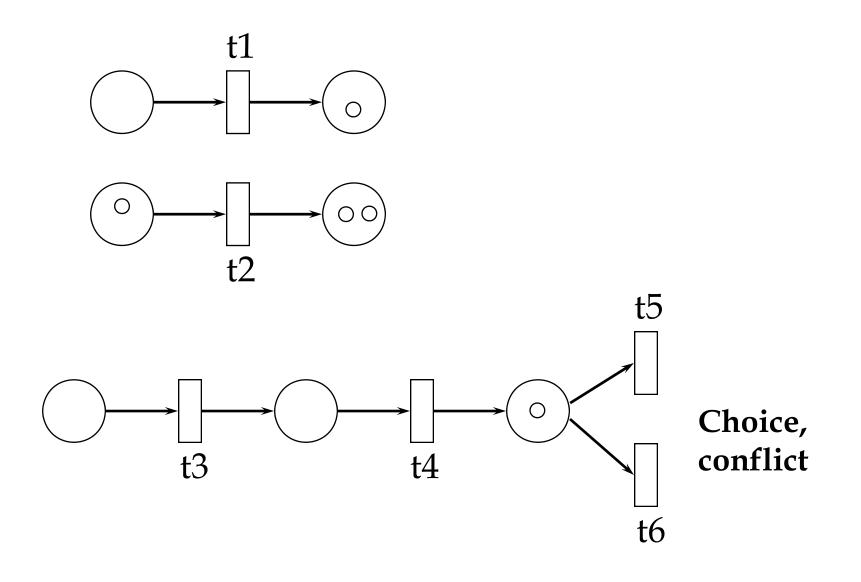
- A marking is changed according to the following rules:
 - A transition is enabled if there are enough tokens in each input place
 - An enabled transition may or may not fire
 - The firing of a transition modifies marking by consuming tokens from the input places and producing tokens in the output places

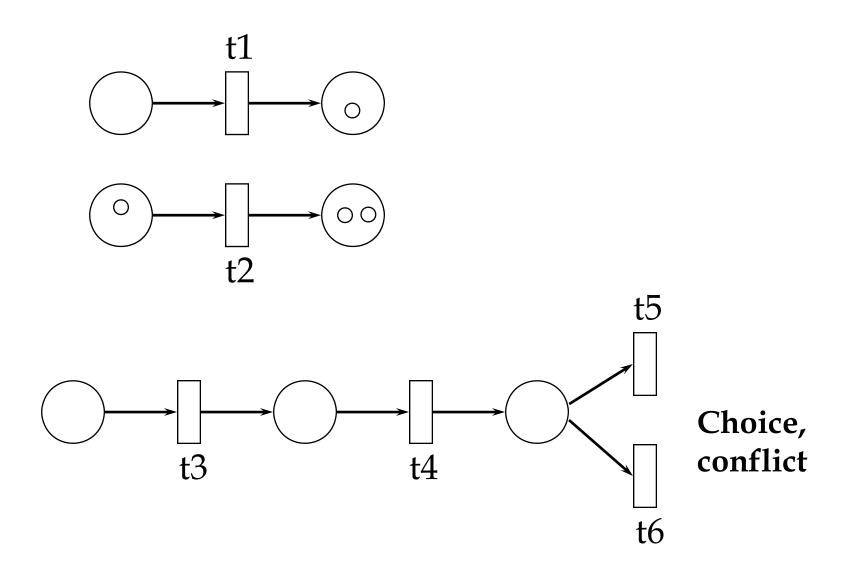


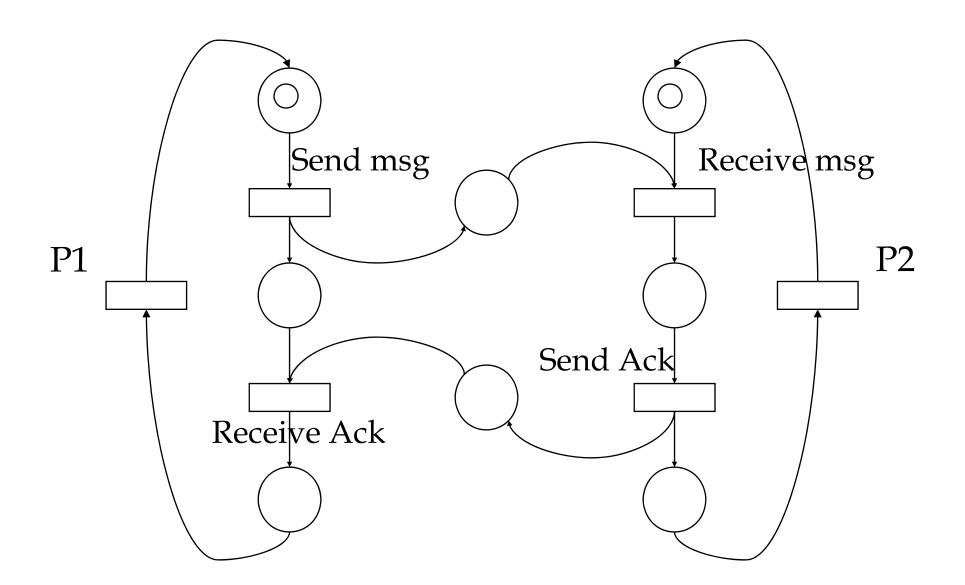


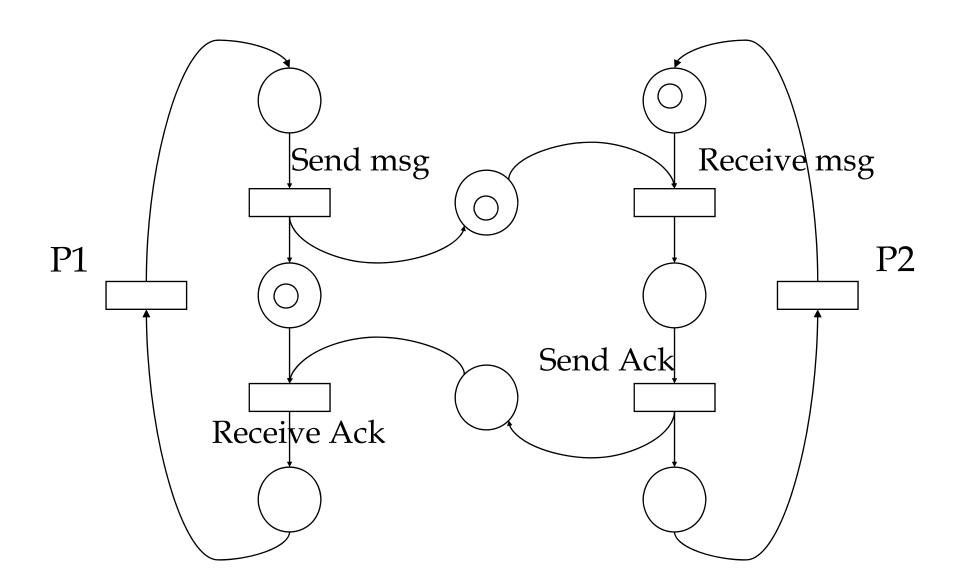


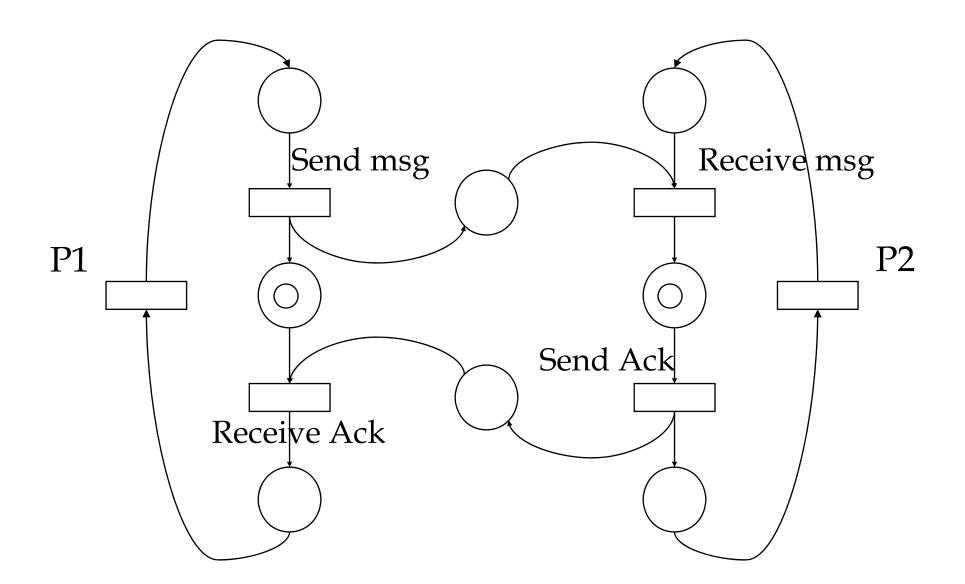


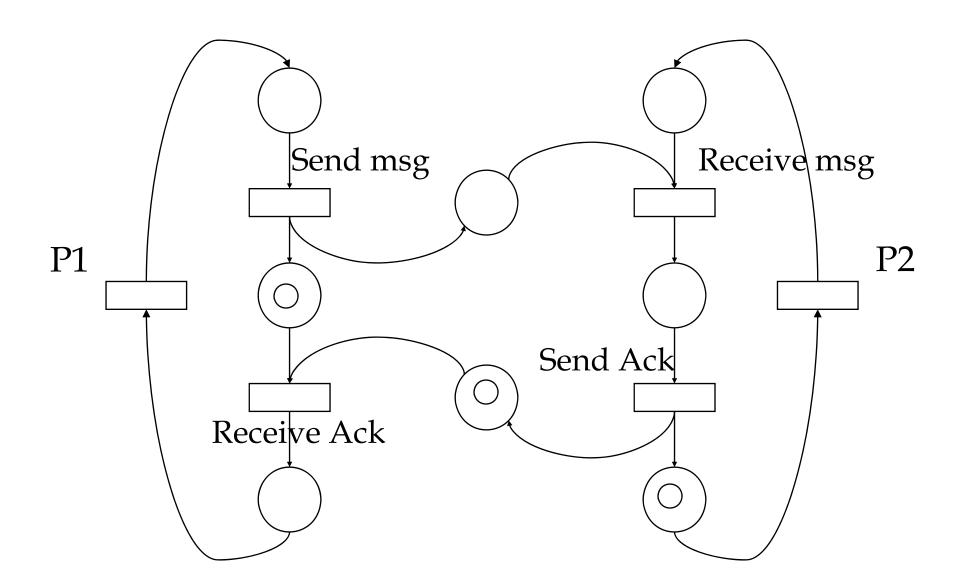


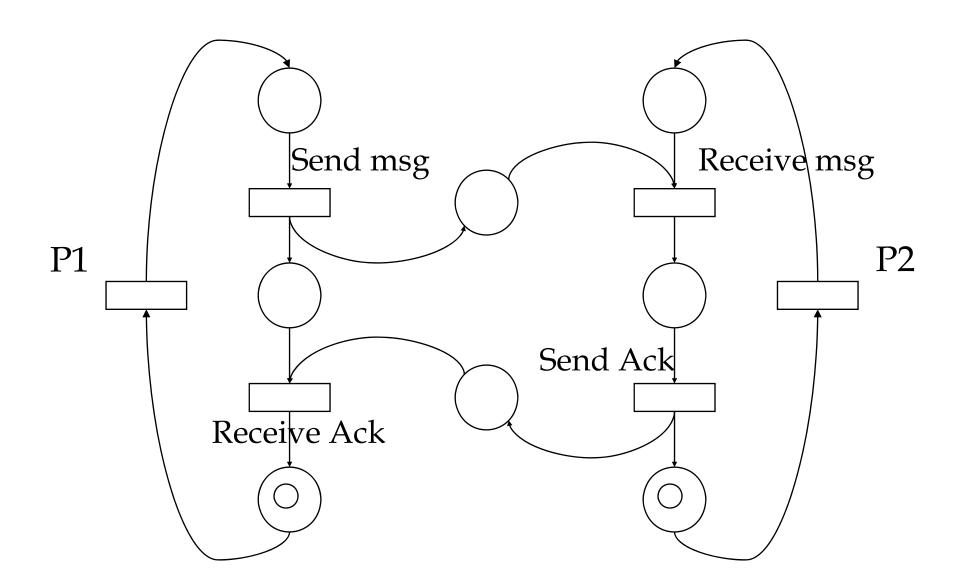


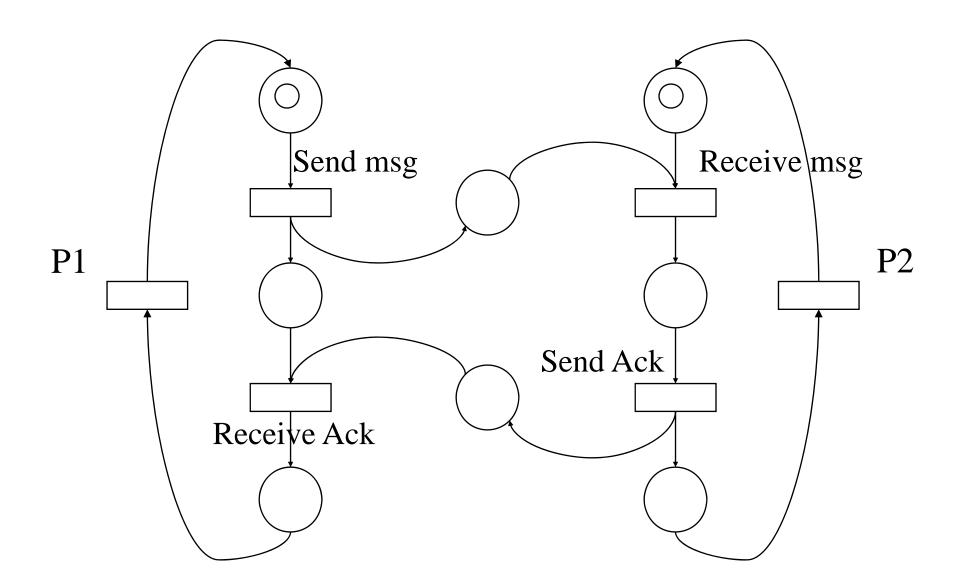


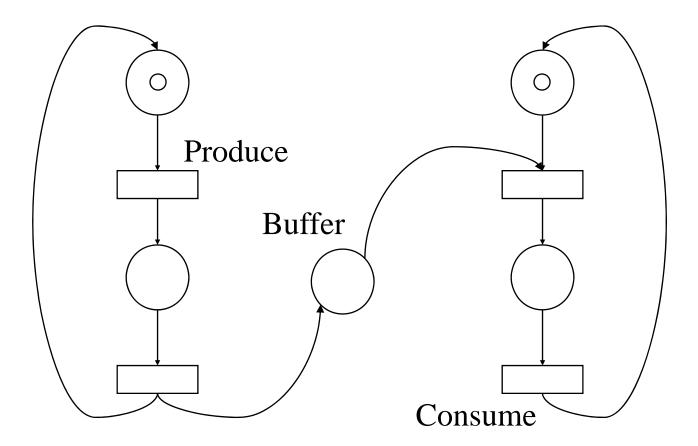


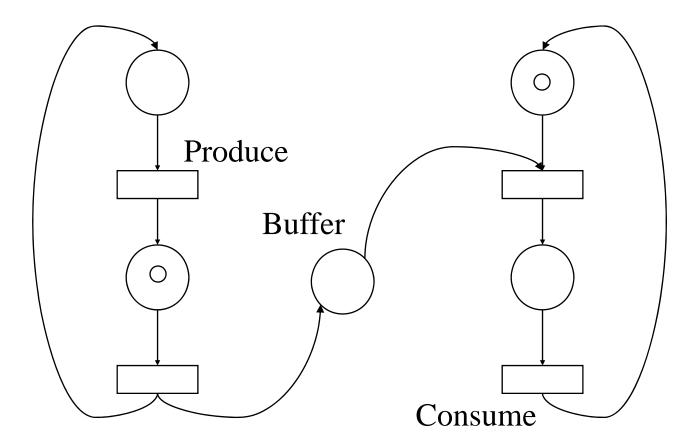


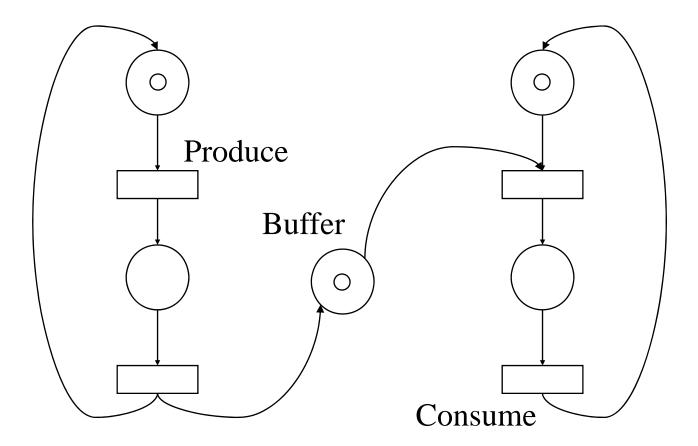


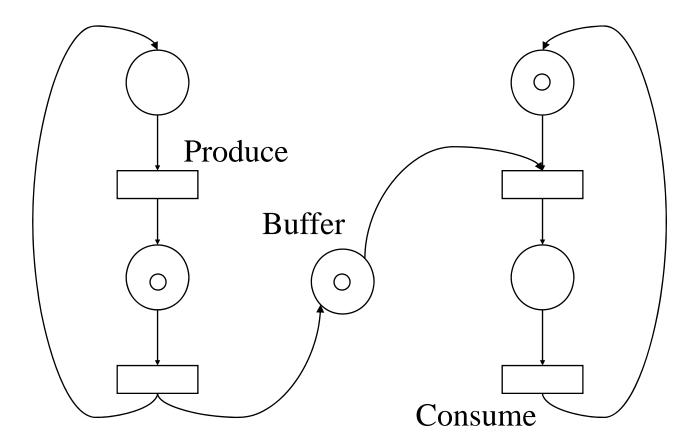


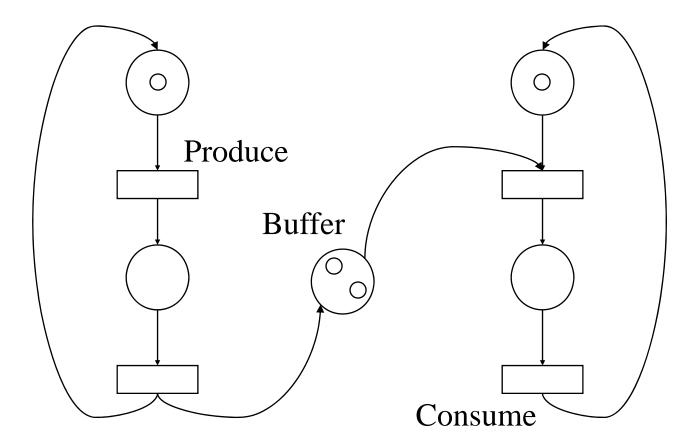


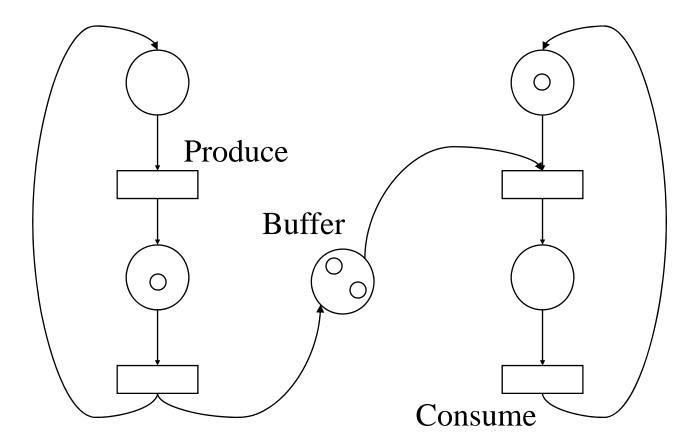


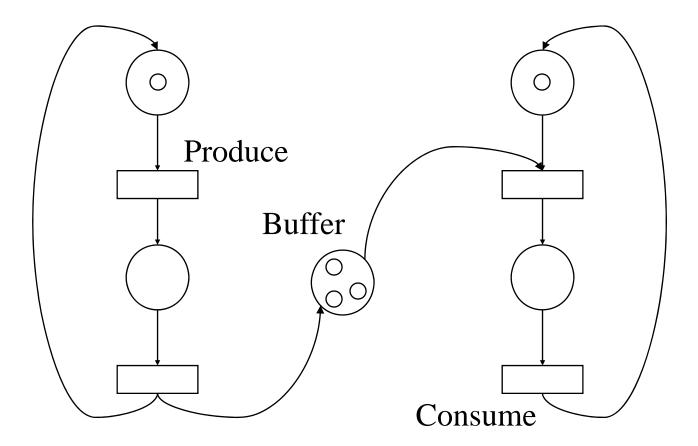


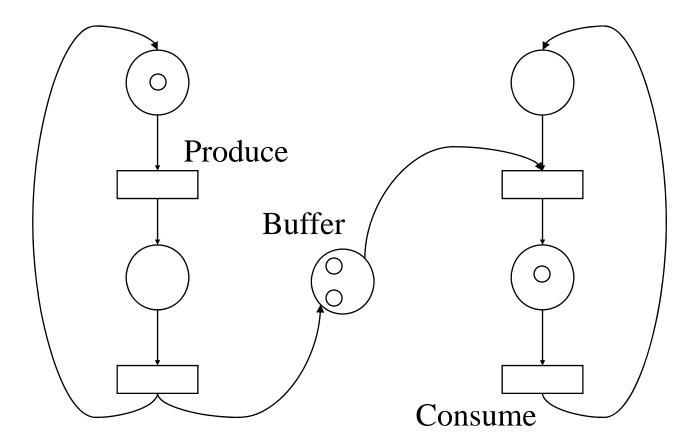


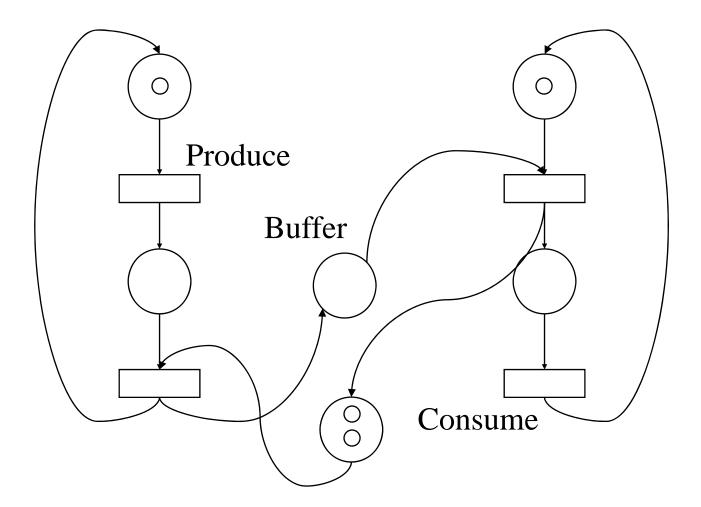


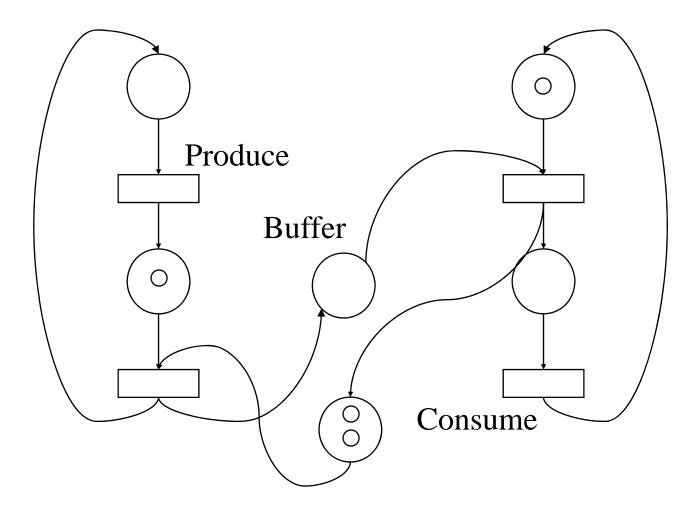


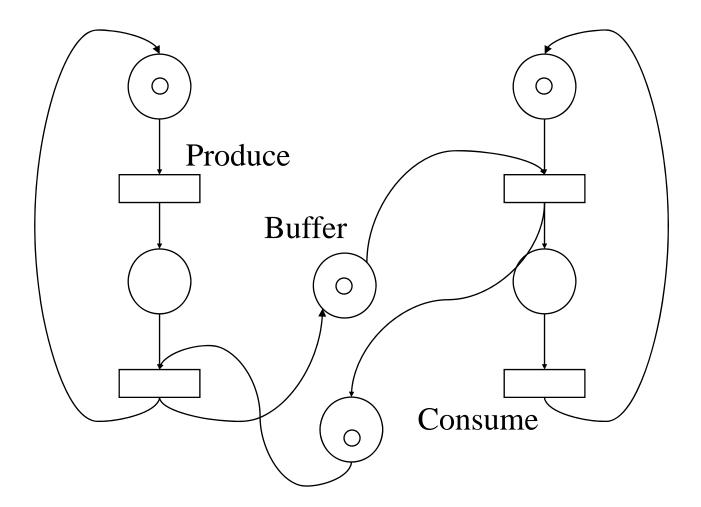


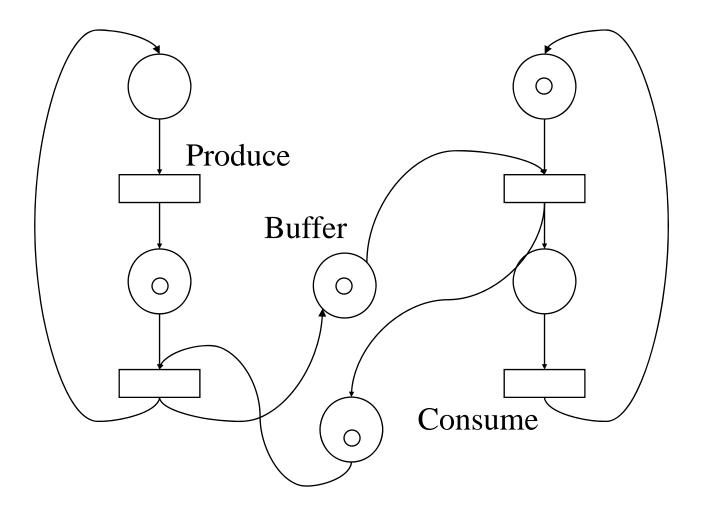


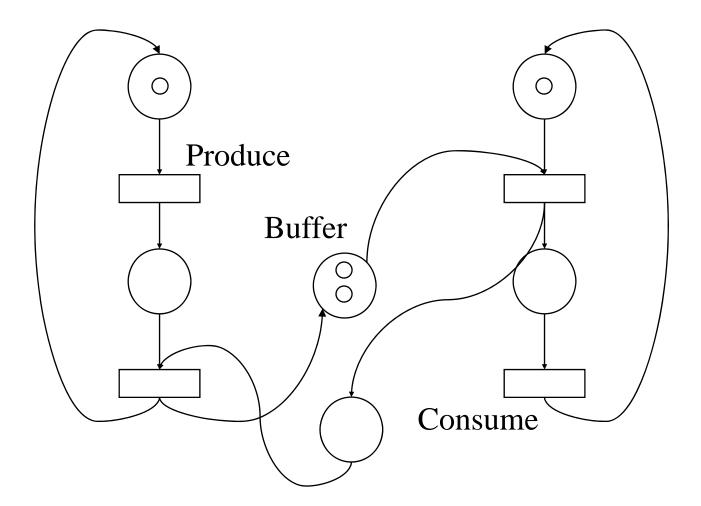


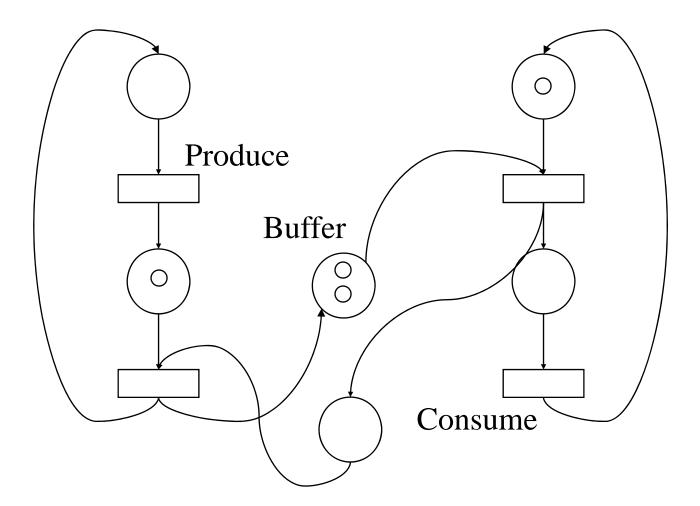








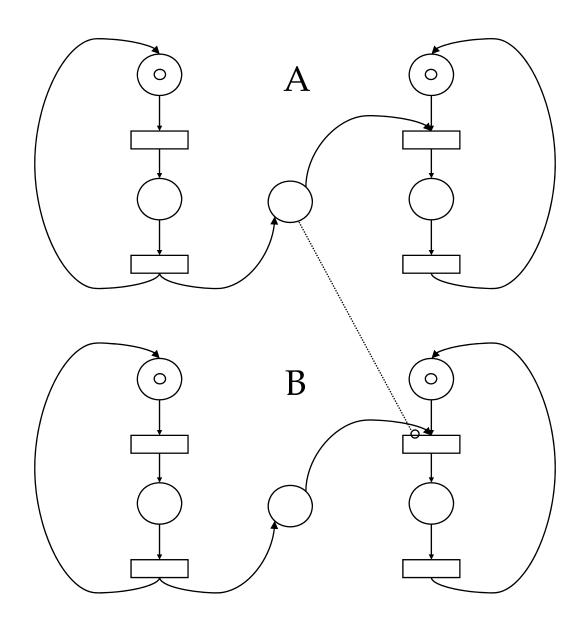




Producer-Consumer with priority

Consumer B can consume only if buffer A is empty

Inhibitor arcs

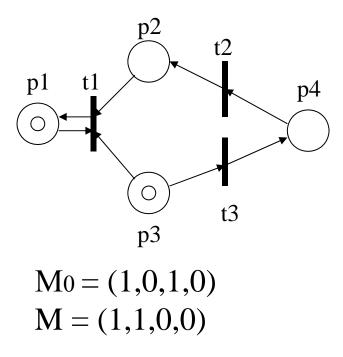


PN properties

- Behavioral: depend on the initial marking (most interesting)
 - Reachability
 - Boundedness
 - Schedulability
 - Liveness
 - Conservation
- Structural: do not depend on the initial marking (often too restrictive)
 - Consistency
 - Structural boundedness

Reachability

- Marking M is reachable from marking M₀ if there exists a sequence of firings $\sigma = M_0 t_1 M_1 t_2 M_2 \dots M$ that transforms M₀ to M.
- The reachability problem is decidable.



$$M_{0} = (1,0,1,0)$$

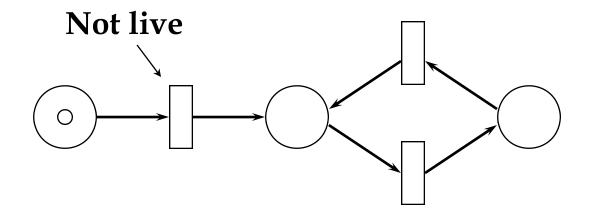
$$\downarrow t_{3}$$

$$M_{1} = (1,0,0,1)$$

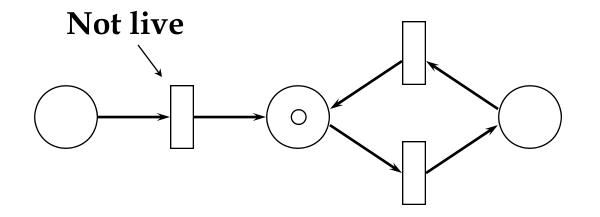
$$\downarrow t_{2}$$

$$M = (1,1,0,0)$$

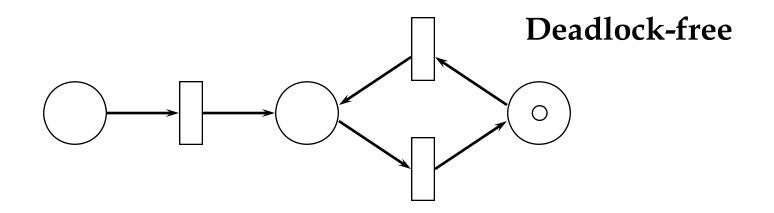
- Liveness: from any marking any transition can become fireable
 - Liveness implies deadlock freedom, not viceversa



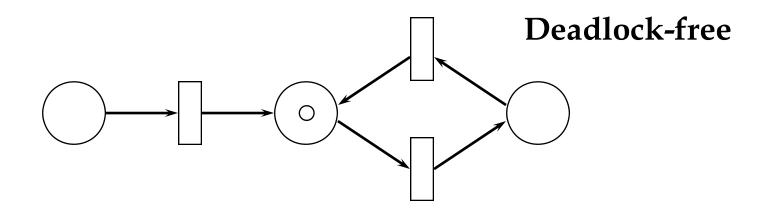
- Liveness: from any marking any transition can become fireable
 - Liveness implies deadlock freedom, not viceversa



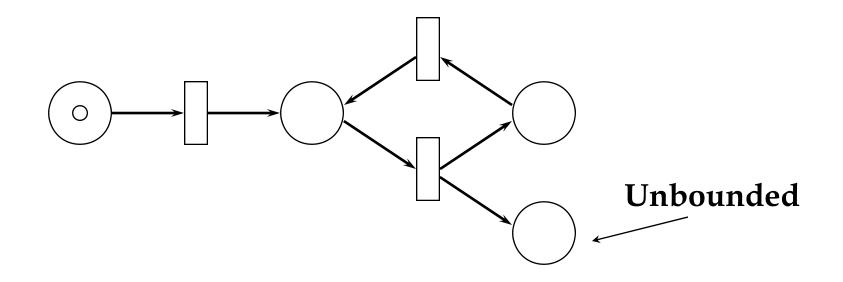
- Liveness: from any marking any transition can become fireable
 - Liveness implies deadlock freedom, not viceversa



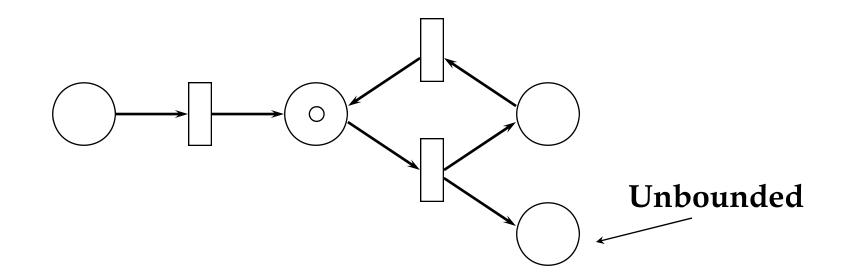
- Liveness: from any marking any transition can become fireable
 - Liveness implies deadlock freedom, not viceversa



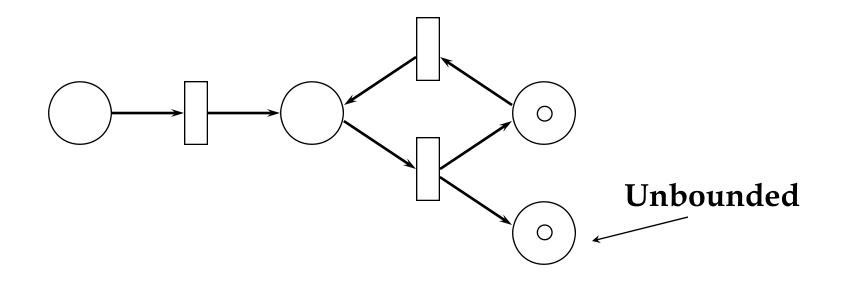
- Boundedness: the number of tokens in any place cannot grow indefinitely
 - (1-bounded also called safe)
 - Application: places represent buffers and registers (check there is no overflow)



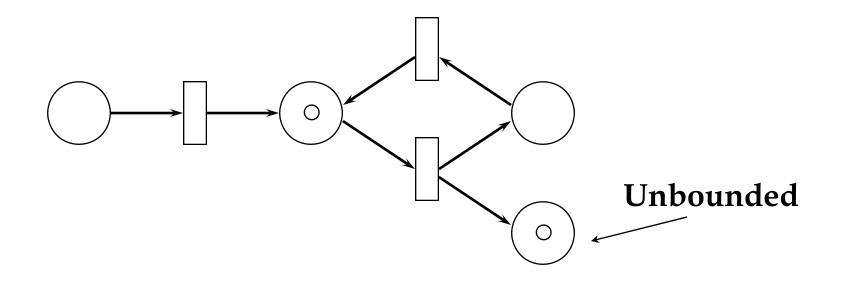
- Boundedness: the number of tokens in any place cannot grow indefinitely
 - (1-bounded also called safe)
 - Application: places represent buffers and registers (check there is no overflow)



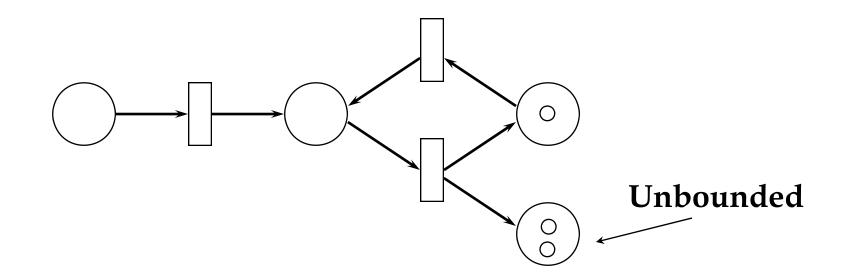
- Boundedness: the number of tokens in any place cannot grow indefinitely
 - (1-bounded also called safe)
 - Application: places represent buffers and registers (check there is no overflow)



- Boundedness: the number of tokens in any place cannot grow indefinitely
 - (1-bounded also called safe)
 - Application: places represent buffers and registers (check there is no overflow)

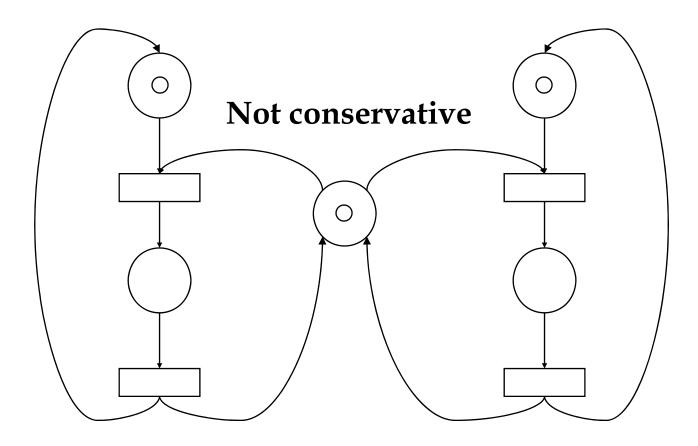


- Boundedness: the number of tokens in any place cannot grow indefinitely
 - (1-bounded also called safe)
 - Application: places represent buffers and registers (check there is no overflow)



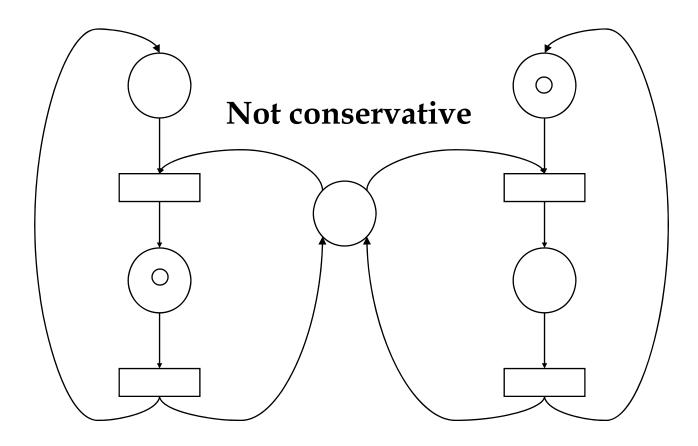
Conservation

Conservation: the total number of tokens in the net is constant



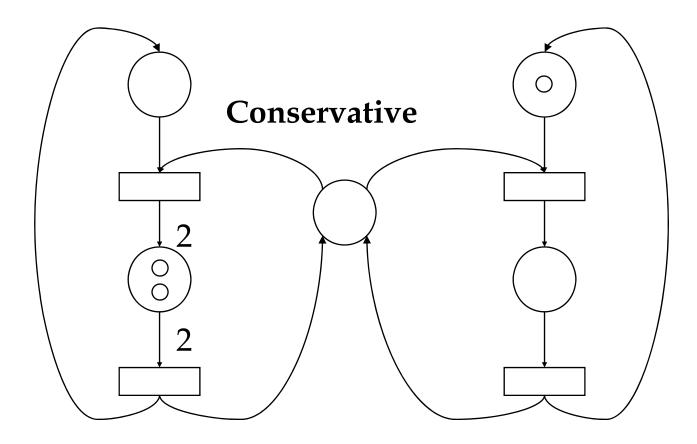
Conservation

Conservation: the total number of tokens in the net is constant



Conservation

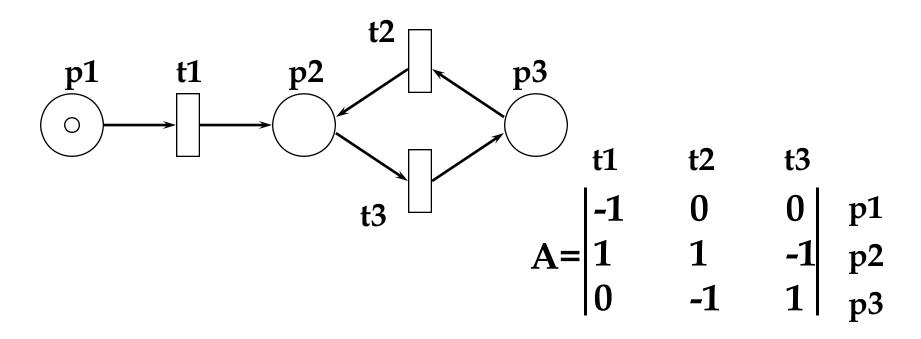
Conservation: the total number of tokens in the net is constant



Analysis techniques

- Structural analysis techniques
 - Incidence matrix
 - T- and S- Invariants
- State Space Analysis techniques
 - Coverability Tree
 - Reachability Graph

Incidence Matrix



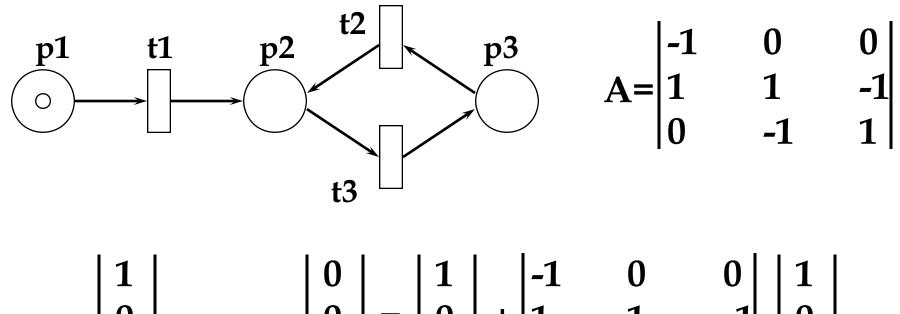
Necessary condition for marking M to be reachable from initial marking M₀:

there exists firing vector v s.t.:

 $M = M_0 + A v$

State equations

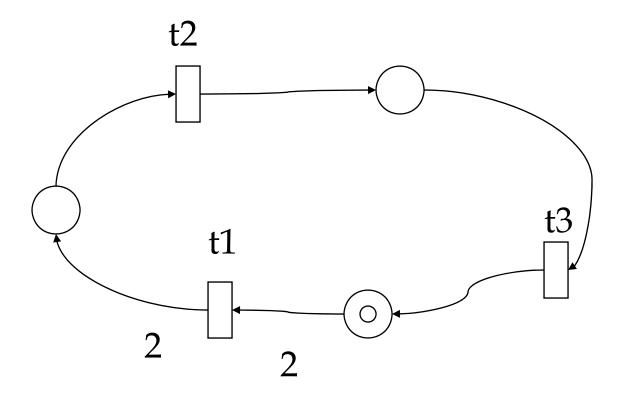
• E.g. reachability of $M = |0 \ 0 \ 1|^T$ from $M_0 = |1 \ 0 \ 0|^T$



$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\$$

_{s1}but also $v_2 = | 112 |^T$ or any $v_k = | 1(k) (k+1) |^T$

Necessary Condition only



Firing vector: (1,2,2)

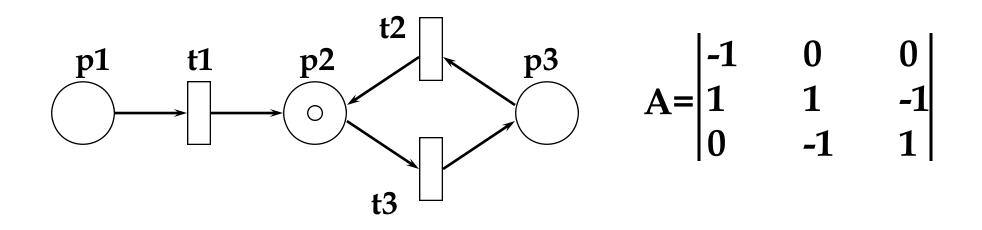
Deadlock!!

State equations and invariants

• Solutions of Ax = 0 (in $M = M_0 + Ax$, $M = M_0$)

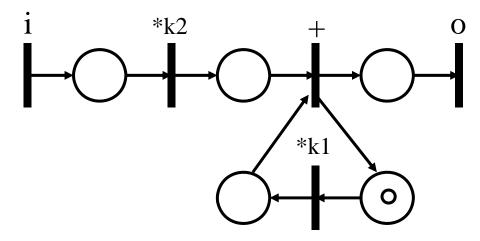
T-invariants

- sequences of transitions that (if fireable) bring back to original marking
- periodic schedule in SDF
- e.g. x =| 0 1 1 |[⊤]



Application of T-invariants

- Scheduling
 - Cyclic schedules: need to return to the initial state



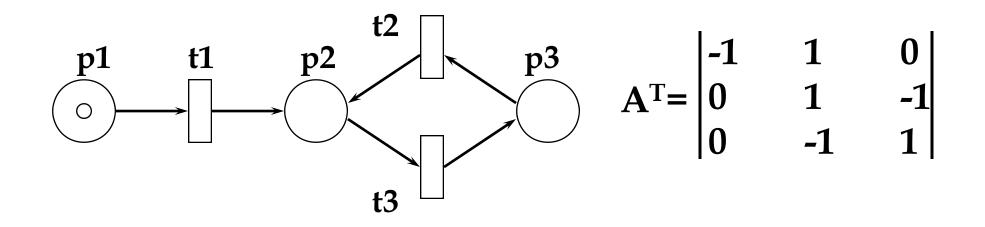
T-invariant: (1,1,1,1,1) Schedule: i *k2 *k1 + 0

State equations and invariants

• Solutions of yA = 0

S-invariants

 sets of places whose weighted total token count does not change after the firing of any transition (y M = y M')



Application of S-invariants

- Structural Boundedness: bounded for any finite initial marking Mo
- Existence of a positive S-invariant is sufficient condition for structural boundedness
 - initial marking is finite
 - weighted token count does not change

Summary of algebraic methods

• Extremely efficient

(polynomial in the size of the net)

- Generally provide only necessary or sufficient information
- Excellent for ruling out some deadlocks or otherwise dangerous conditions
- Can be used to infer structural boundedness

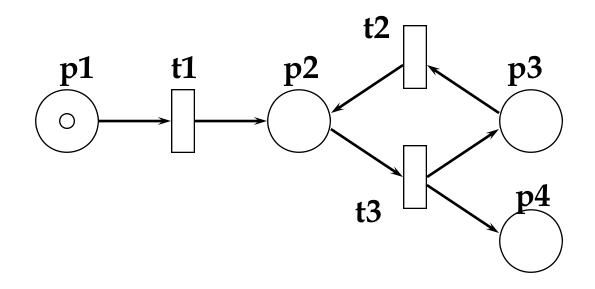
• Build a (finite) tree representation of the markings

Karp-Miller algorithm

- Label initial marking M0 as the root of the tree and tag it as *new*
- While new markings exist do:
 - select a new marking M
 - if M is identical to a marking on the path from the root to M, then tag M as *old* and go to another new marking
 - if no transitions are enabled at M, tag M dead-end
 - while there exist enabled transitions at M do:
 - obtain the marking M' that results from firing t at M
 - on the path from the root to M if there exists a marking M' such that M' (p)>=M' (p) for each place p and M' is different from M', then replace M' (p) by ω for each p such that M' (p) >M' (p)
 - introduce M' as a node, draw an arc with label t from M to M' and tag M' as *new*.

• Boundedness is decidable with coverability tree

1000



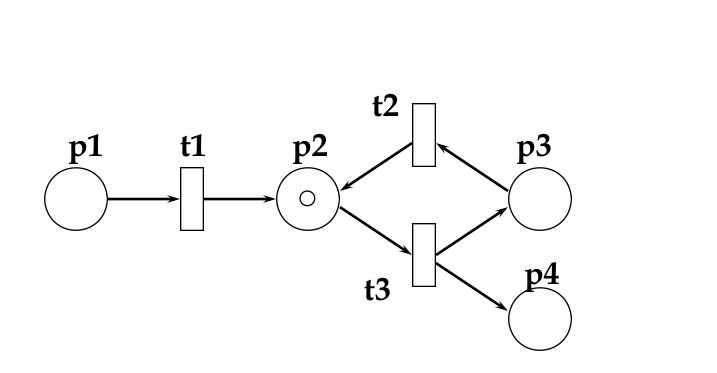
1000

0100

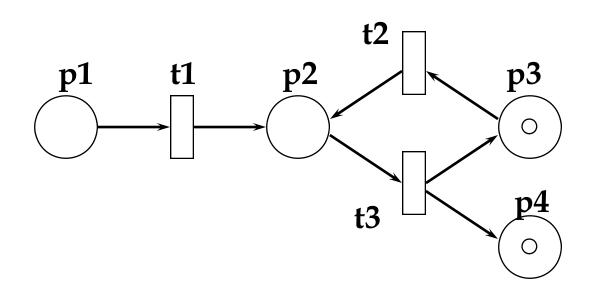
t1

Coverability Tree

• Boundedness is decidable with coverability tree

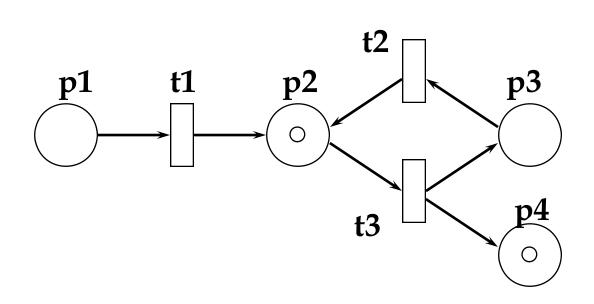


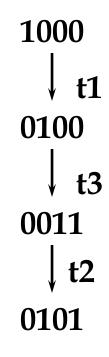
• Boundedness is decidable with *coverability tree*



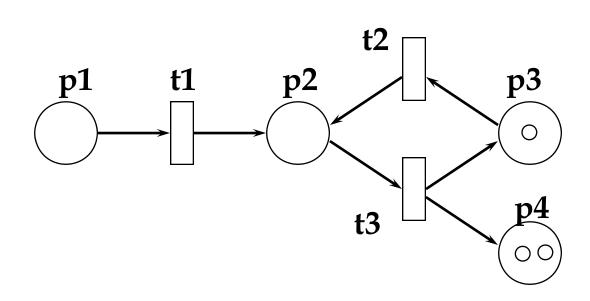
1000 ↓ t1 0100 ↓ t3 0011

• Boundedness is decidable with *coverability tree*



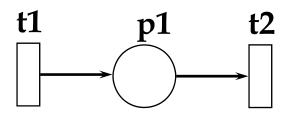


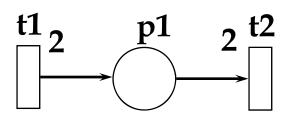
• Boundedness is decidable with coverability tree



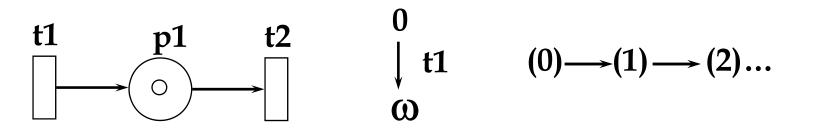
1000 ↓ t1 0100 ↓ t3 0011 ↓ t2 0100

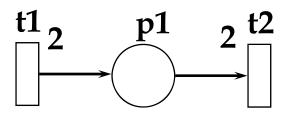
• Is (1) reachable from (0)?



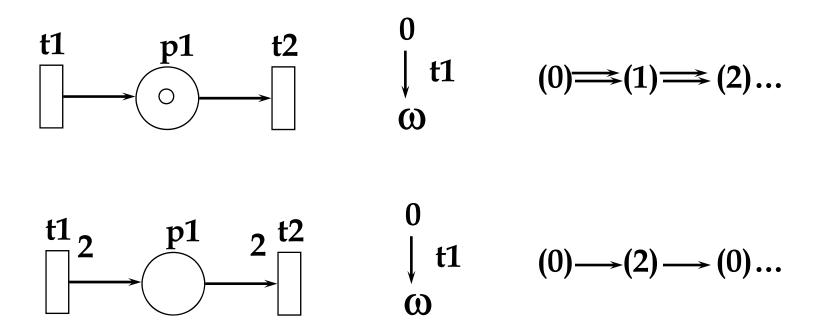


• Is (1) reachable from (0)?

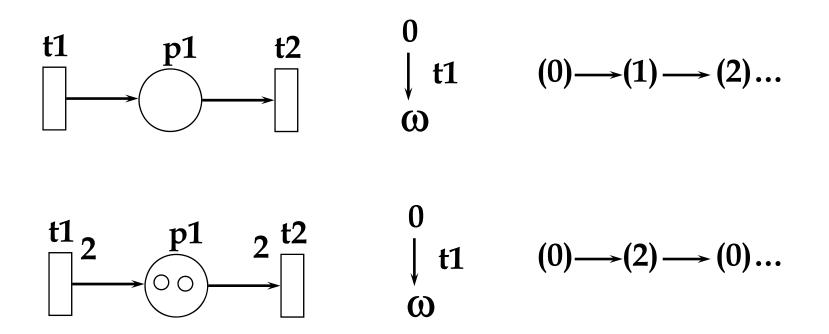




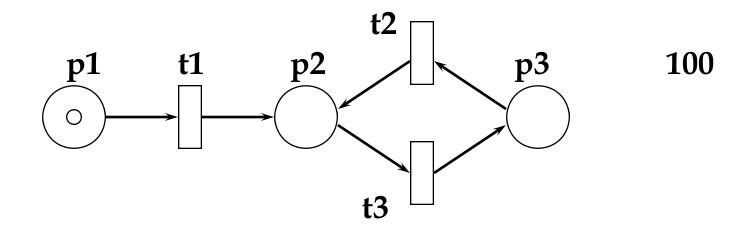
• Is (1) reachable from (0)?

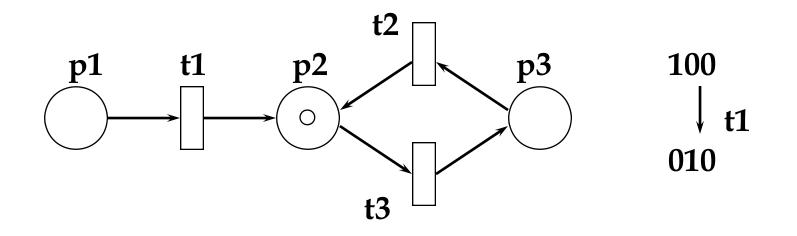


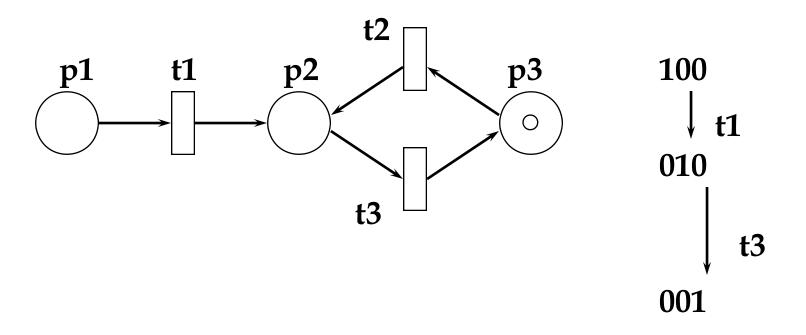
• Is (1) reachable from (0)?

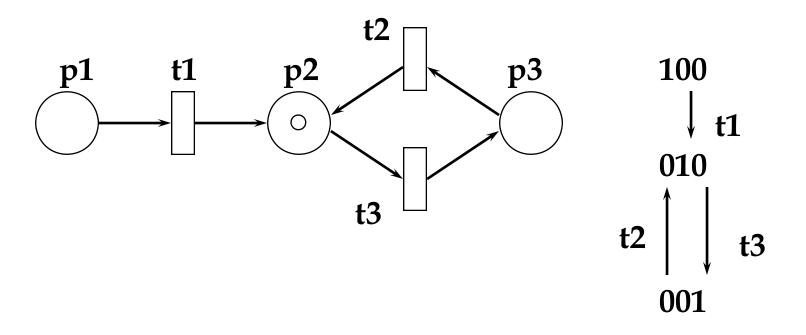


• Cannot solve the reachability problem





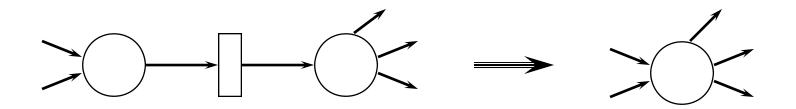




Subclasses of Petri nets

- Reachability analysis is too expensive
- State equations give only partial information
- Some properties are preserved by reduction rules

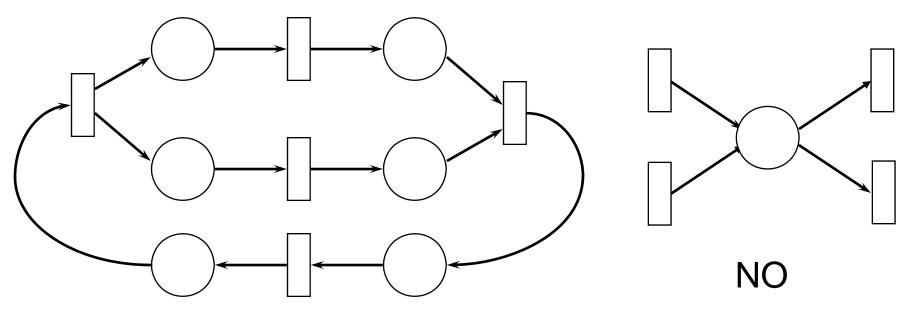
e.g. for liveness and safeness



- Even reduction rules only work in some cases
- Must restrict class in order to prove stronger results

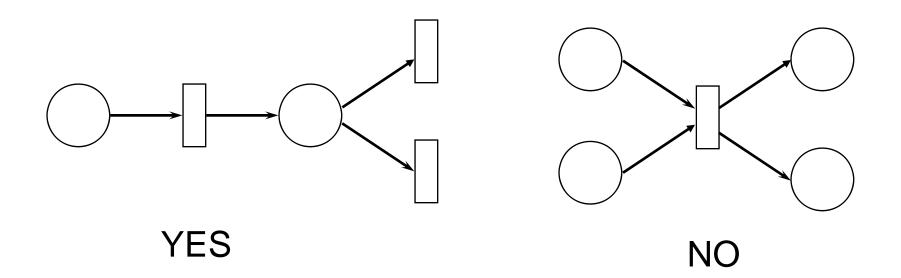
Marked Graphs

- Every place has at most 1 predecessor and 1 successor transition
- Models only causality and concurrency (no conflict)

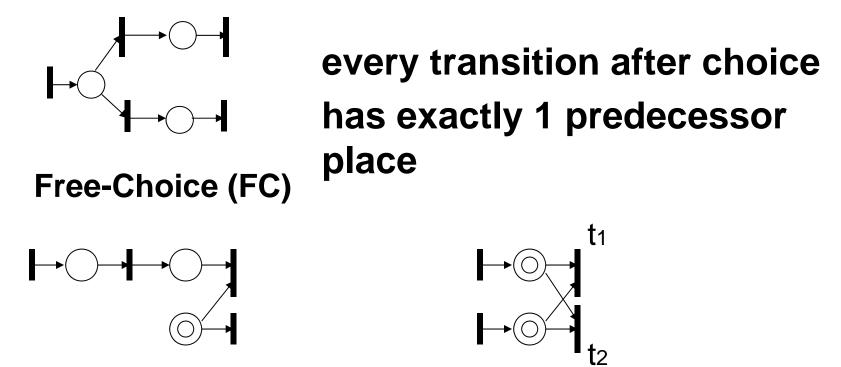


State Machines

- Every transition has at most 1 predecessor and 1 successor place
- Models only causality and conflict
 - (no concurrency, no synchronization of parallel activities)



Free-Choice Petri Nets (FCPN)



Confusion (not-Free-Choice) Extended Free-Choice

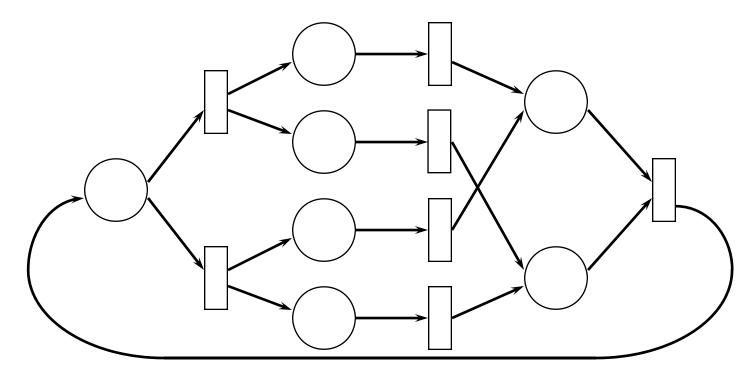
Free-Choice: the outcome of a choice depends on the value of a token (abstracted nondeterministically) rather than on its arrival time.

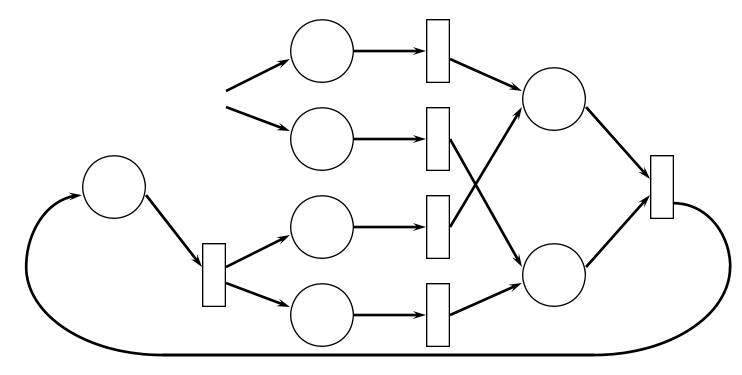
Free-Choice nets

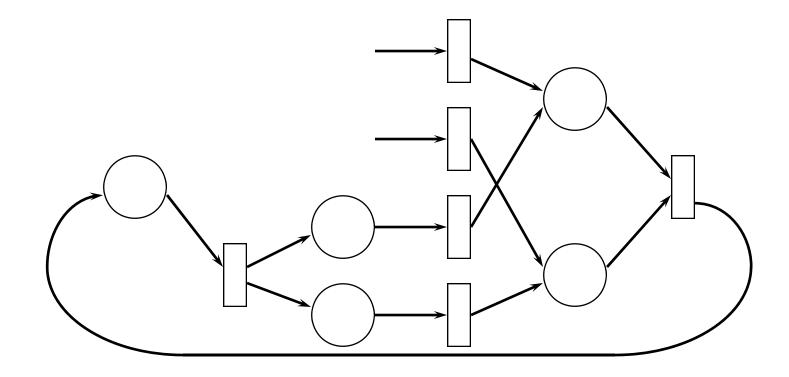
- Introduced by Hack ('72)
- Extensively studied by Best ('86) and Desel and Esparza ('95)
- Can express concurrency, causality and choice without confusion
- Very strong structural theory
 - necessary and sufficient conditions for liveness and safeness, based on decomposition
 - exploits duality between MG and SM

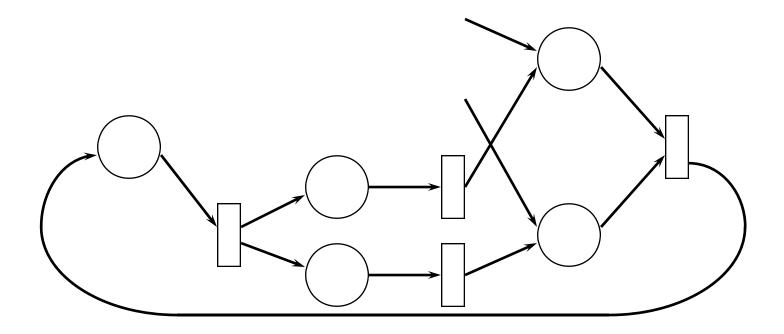
MG (& SM) decomposition

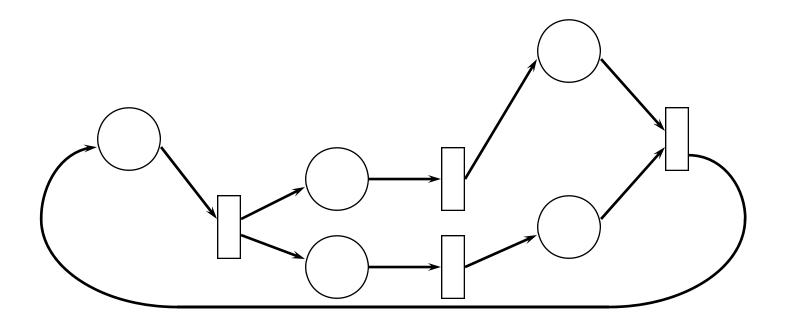
- An Allocation is a control function that chooses which transition fires among several conflicting ones (A: P T).
- Eliminate the subnet that would be inactive if we were to use the allocation...
- Reduction Algorithm
 - Delete all unallocated transitions
 - Delete all places that have all input transitions already deleted
 - Delete all transitions that have at least one input place already deleted
- Obtain a Reduction (one for each allocation) that is a conflict free subnet





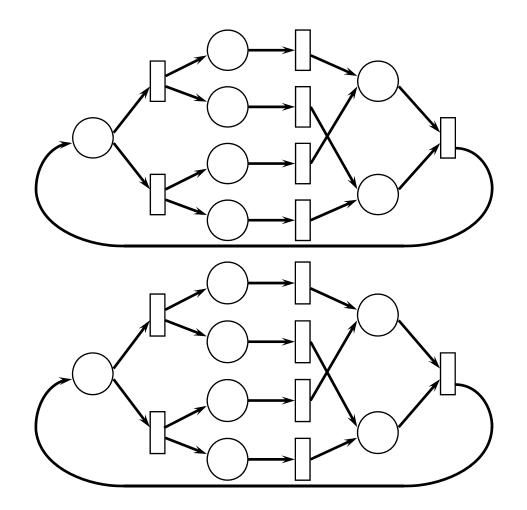






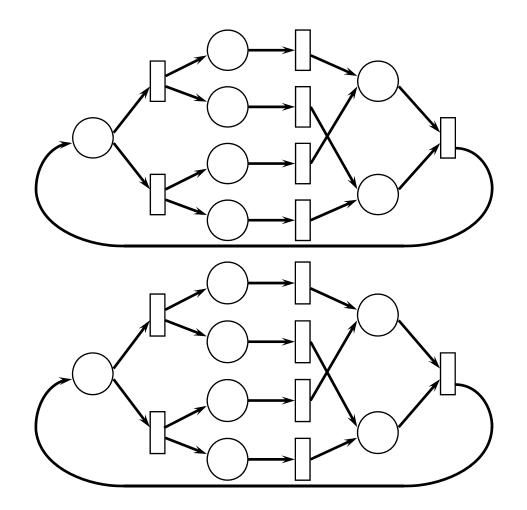
MG reductions

• The set of all reductions yields a cover of MG components (T-invariants)



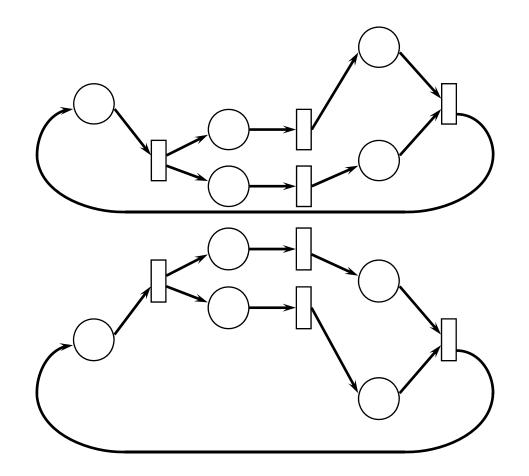
MG reductions

• The set of all reductions yields a cover of MG components (T-invariants)



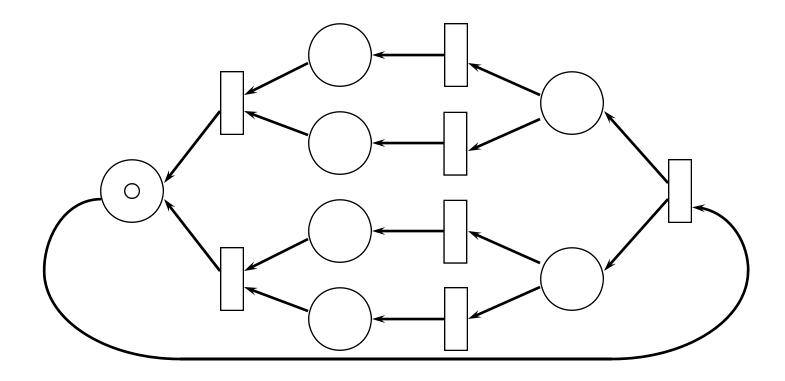
MG reductions

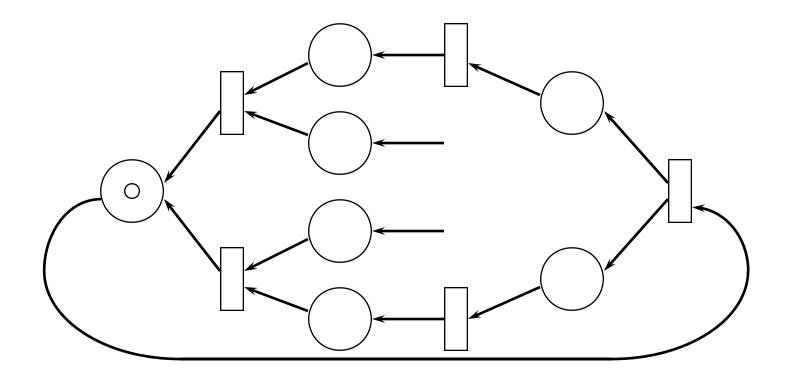
• The set of all reductions yields a cover of MG components (T-invariants)

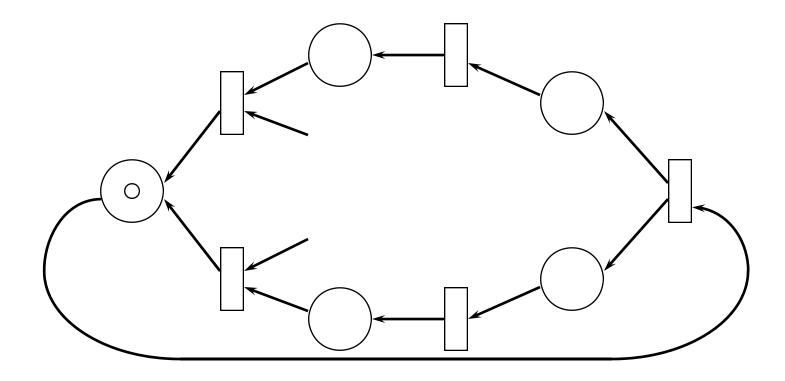


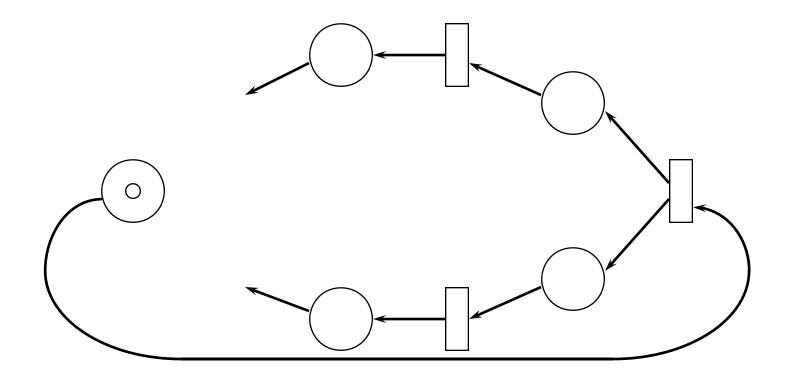
Hack's theorem ('72)

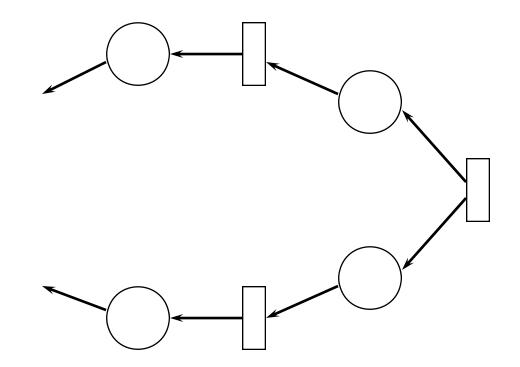
- Let N be a Free-Choice PN:
 - N has a live and safe initial marking (well-formed)
 - if and only if
 - every MG reduction is strongly connected and not empty, and the set of all reductions covers the net
 - every SM reduction is strongly connected and not empty, and the set of all reductions covers the net

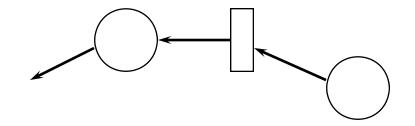


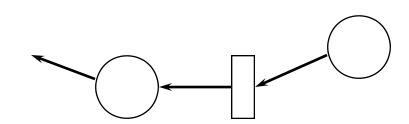


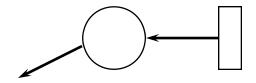


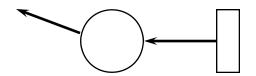


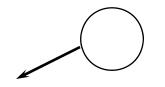


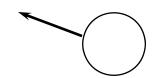


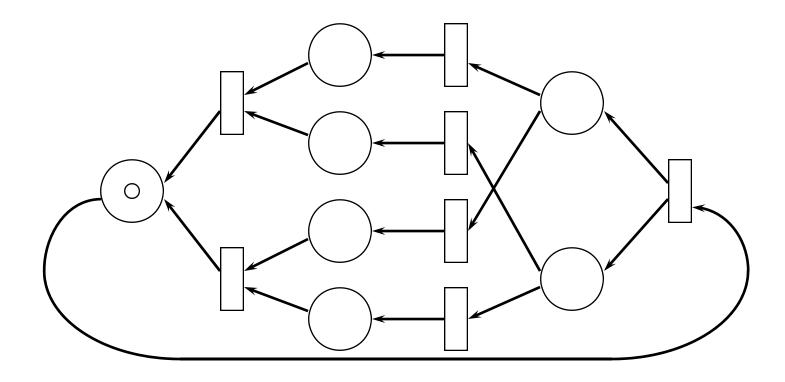


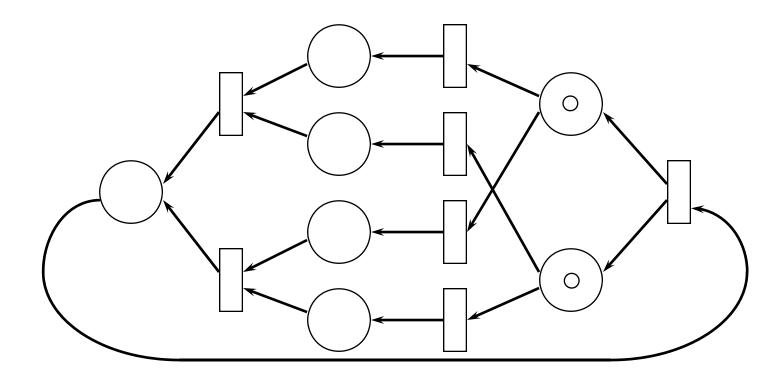


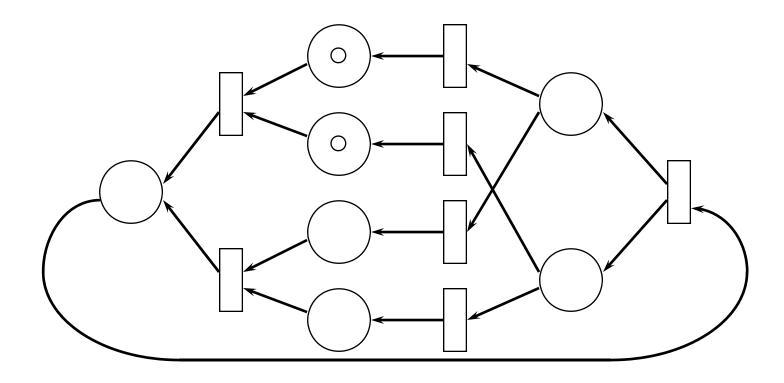


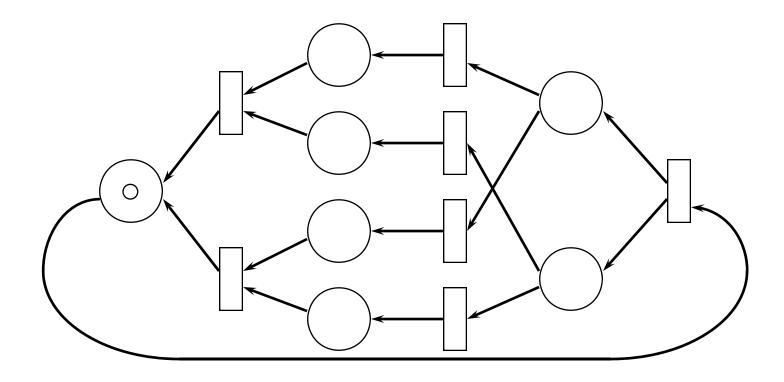


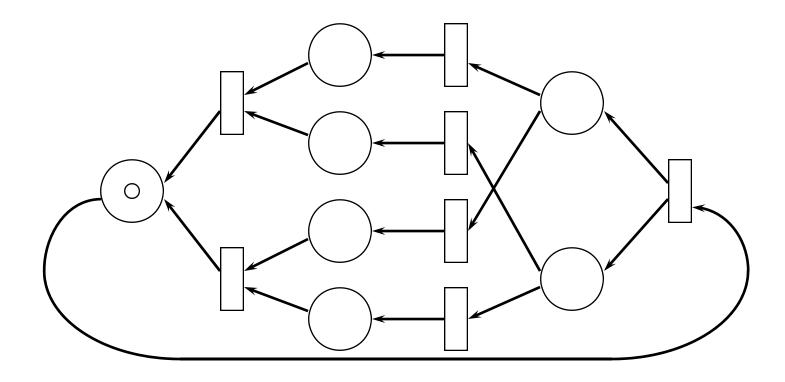


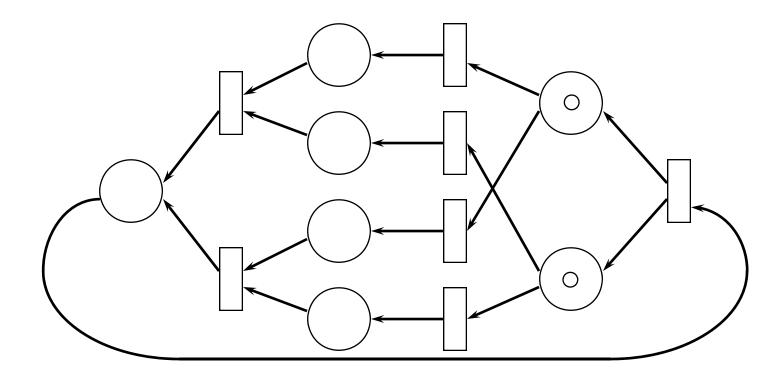


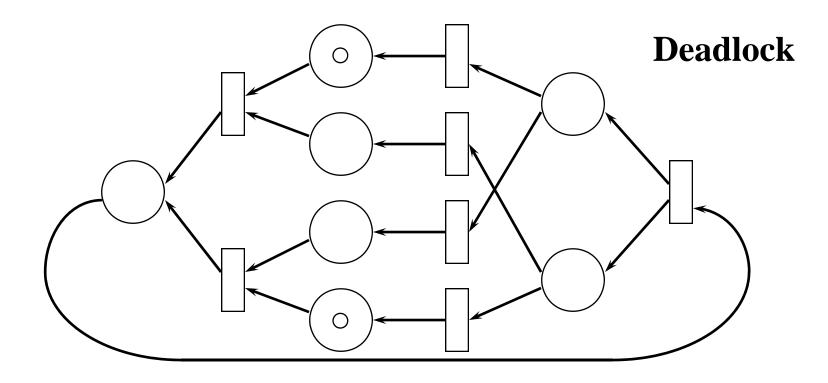












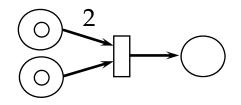
Summary of LSFC nets

- Largest class for which structural theory really helps
- Structural component analysis may be expensive (exponential number of MG and SM components in the worst case)
- But...
 - number of MG components is generally small
 - FC restriction simplifies characterization of behavior

Petri Net extensions

- Add interpretation to tokens and transitions
 - Colored nets (tokens have value)
- Add time
 - Time/timed Petri Nets (deterministic delay)
 - type (duration, delay)
 - where (place, transition)
 - Stochastic PNs (probabilistic delay)
 - Generalized Stochastic PNs (timed and immediate transitions)
- Add hierarchy
 - Place Charts Nets

PNs Summary



- PN Graph: places (buffers), transitions (actions), tokens (data)
- Firing rule: transition enabled if there are enough tokens in each input place
- Properties
 - Structural (consistency, structural boundedness...)
 - Behavioral (reachability, boundedness, liveness...)
- Analysis techniques
 - Structural (only CN or CS): State equations, Invariants
 - Behavioral: coverability tree
- Reachability
- Subclasses: Marked Graphs, State Machines, Free-Choice PNs

References

- T. Murata Petri Nets: Properties, Analysis and Applications
- http://www.informatik.uni-hamburg.de/TGI/PetriNets/!!