Dancing Driving Robots
(DDR)

Anthony Castro, Vashisht Madhavan,
Stephen Martinis

Summary

DDR is a time-trial based game in
which a user interacts with a GUI and
Leap Motion to control an iRobot.

If you can travel the goal distance
before the song ends, then you win.
Else you lose!

Inspired by popular arcade game:
Dance Dance Revolution

Demo Time!

How it works

Laptop
Bluetooth
Transmitter

BLusSMIRE

USB

Python

Bluetooth

Serial
Connection
and C++

Serial
Connection
and C++

The Leap Motion and GUI

Leap Motion is a motion sensor that sends data to a computer via USB.

Using this data and the Leap Motion Python SDK, we constructed the GUI

.
Robot Progress

_‘
—e

GUI State Diagram

Song Progress

sQng && method / jnit
Y

\’I SETUP I I PLAY | I QUIT |
J‘Qu;.tk jzult /

Inputs: song: {Fireflies, Head Over Heels, absent}
method: pure
gAmeQVex: pure
Quit: pure

\y

Outputs: gameQver: pure
dnik: pure

The iIRobot

iRabot Navigation State Chart

dnit, /
surrsSpeed := 0
goal := goallisk
INACTIVE ACTIVE
gansQuex, OR victory / &ux;ﬁpgésffé/speed,
surrspsed. := 0 curzDirsction := direction
Inputs: init: pure Continuous Variables:
drive: pure surrSpeed:
gameQver.: pure gurrDirection: {Forward, Backward, absent}
speed:

direction: {Forward, Backward, absent}
victery: {true, false, absent}
geallist:

Outputs: None

Design inspired by: http://developer.mbed.org/cookbook/iRobot-Create-Robot

Communication

Packet transmission via Bluetooth
Created custom Bluetooth protocol for transactions

Packets formatted as such:
[OpCode] [Packet ID] [Packet Data] [Checksum)]

Transmitter code in GUI, uses LightBlue — Bluetooth API

Receiver code on mbed uses mbed API to read serial data from BlueSMiRF

Transmission latency ~ 34ms

- Overall System Model

Synchronous Compos;t;on

sqQng && method /
curxspesd := 0
- dxive. /
CUrxSpesd, := speed,
CUWrXRIFestion := direction

SETUP, INACTIVE PLAY, ACTIVE

gameouex, / /‘
. /‘\
ganeQvex, /
SETUP, ACTIVE END, INACTIVE MW__—— END, ACTIVE

quit, /

EXIT, ACTIVE

EXIT, INACTIVE 4
ganeQvex, /

PLAY, INACTIVE

{Fireflies, Head Over Heels, absent}

Inputs: song:
Continuous Variables:

perhod: pure
GansO¥RK: pure currSpeed: Z
QuiL: pure cuxxRirection: {Forward, Backward, absent}

Reaction latency ~78 ms

Issues Raised

Where to do distance calculation?
Faulty iIRobot clock
Commanding the iRobot Create

ISRSs

Where do we go from here?

Increase user experience

e smarter scoring algorithm
e notes appearing in rhythm, not just each quarter note

Perform distance calculations on mbed/iRobot

e decreases computation on GUI
e can do through multithreading

Multiplayer experience?

e need multiple systems

e single system with split screen and two robots would require more
calculations on GUI

Questions?

