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What is it?

A home automation framework that aims to remedy 
the problems of current home automation systems.
● Functional despite lack of internet connectivity
● Simple to use with existing sensors in market
● Easily extendable to any custom sensors
● Easy to build applications over
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Sensors - Overview

● Low level hardware components used to read data 
● Fed toward the main system in which the data is 

used for higher level applications
● Created libraries for sensors so that it can be easily 

used for applications.



Sensors - Types

1. Carbon Monoxide sensor -MQ-7

2. Combustible gas sensor -MQ-2 

3. Humidity and Temperature Sensor 

Breakout - HIH6130

4. Infrared Proximity Breakout - VCNL4000

5. Luminosity Sensor Breakout - TSL2561

6. Triple-Axis Digital-Output Gyro Breakout - 

ITG-3000

7. SparkFun Barometric Pressure Sensor 

Breakout- BMP180

8. Ultrasonic Range Detector - LV-MaxSonar-

EZ3

9. SparkFun Sound Detector - LMV324
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Sensors - Communication

● Divided into 2 communication methods
● One set uses I2C protocol, where communication 

between sensor and processor is made through 
acknowledgement

● Other set communicate purely through reading 
analog values of the output pin of the sensor

● According to the type of communication, libraries 
were created/edited



Basic Model of Libraries for Pure Analog
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Basic Model of Libraries for Pure Analog
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I2C Represented as State Machine

Stolen from http://patentimages.storage.googleapis.com/EP1405192B1/



Basic Model of Libraries for I2C
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Basic Model of Libraries for I2C
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Libraries represented  in State Space 
Model

Initialization

Wait read

noise 
dependent

noise 
independentError

Dependent = {true,false}
Rev = {true,false,absent}
S.A = [0,255]
Data = [0,1]
Read_Request = {true,false}
Valid = {true,false}
Data_Calculation(int Data) = R 
Read_Data() = [0,1]
Find_Gain() = R

!rev Λ (S.A V !S.A)/
 

rev = false V S.A = False/
 

read_request/
 Data = Read_Data();
Valid = Valid_Data(Data); 

valid = False/

valid Λ !dependent/

valid Λ dependent/
gain = Find_Gain();

/gain* Data_Calculation(Data)

/ Data_Calculation(Data)

Dependent
Rev
S.A



Connection of Multiple Devices

● These libraries support multiple sensor connections 
to a single processor.

● I2C Sensors we are using for the project all have 
unique slave addresses that allows multiple 
connections to the main processor

● Applications that require multiple sensors can 
utilize these libraries without requiring more pins

● Abstract away frontend knowledge required to 
utilize multiple sensor data



Components - Network

● Sensor readings are passed to the server using a 
lightweight TCP connection.

● Users can access stored data through a mobile 
device or desktop. 



Components - Local Server

● Acts as TCP server and receives data from sensors
● Relays sensor data to the cloud when possible
● Periodically updates cloud if sensor data is received 

during time of no internet access
● Stores data locally on SD card to fortify against 

power outages and allow data access despite 
internet connectivity



Components - Local Server
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Components - Cloud Server

● Deployed to cloud via Heroku
● Allows users to access data regardless of location
● RESTful API provides simple interface for users to 

easily query for data they need, making it easy to 
build applications upon our architecture



Video/Demo

http://www.youtube.com/watch?v=JET7_olfVKw


Future Plans

● Enclose the boards in rugged cases to improve 
robustness.

● Include Central Role bluetooth capability 
(dependent on release of S130 SoftDevices mbed 
support)

● Include support for uploading applications via 
Bluetooth


