
Home Automation System

Jacob Minyoung Huh, Jene Li,
 Michelle Nguyen

What is it?

A home automation framework that aims to remedy
the problems of current home automation systems.
● Functional despite lack of internet connectivity
● Simple to use with existing sensors in market
● Easily extendable to any custom sensors
● Easy to build applications over

General System Model

Sensor
Libraries

Cloud
Server

Sensors

Integration

Backend

Sensors

Microcontroller

Server

Mobile
Devices

Sensors - Overview

● Low level hardware components used to read data
● Fed toward the main system in which the data is

used for higher level applications
● Created libraries for sensors so that it can be easily

used for applications.

Sensors - Types

1. Carbon Monoxide sensor -MQ-7

2. Combustible gas sensor -MQ-2

3. Humidity and Temperature Sensor

Breakout - HIH6130

4. Infrared Proximity Breakout - VCNL4000

5. Luminosity Sensor Breakout - TSL2561

6. Triple-Axis Digital-Output Gyro Breakout -

ITG-3000

7. SparkFun Barometric Pressure Sensor

Breakout- BMP180

8. Ultrasonic Range Detector - LV-MaxSonar-

EZ3

9. SparkFun Sound Detector - LMV324

1. 3.

4. 5. 6.

7. 8. 9.

2.

Sensors - Communication

● Divided into 2 communication methods
● One set uses I2C protocol, where communication

between sensor and processor is made through
acknowledgement

● Other set communicate purely through reading
analog values of the output pin of the sensor

● According to the type of communication, libraries
were created/edited

Basic Model of Libraries for Pure Analog

Read data Check validity

Read scaled
data

Compute gain
according to
noise

Measure
noise/ambient

In all I2C sensors

In some I2C sensors

Basic Model of Libraries for Pure Analog

Read data

Check validity

Compute gain
according to
noise

Measure
noise/ambient

Read scaled
data

Push data

Data value
conversion

Read Request

Error Connection
and validity

Default transition
True to evaluation
False to evaluation
Transition depends on the availability of the library

I2C Represented as State Machine

Stolen from http://patentimages.storage.googleapis.com/EP1405192B1/

Basic Model of Libraries for I2C

Check sensor
address
(Slave
address)

Check sensor
product
revision
number

Retrieve data

Check validity
Compute gain
according to
noise

Measure
noise/ambient

In all I2C sensors

In some I2C sensors

Read scaled
data

Basic Model of Libraries for I2C

Check sensor
address
validity
(slave
address)

Check sensor
product
revision
number
validity Retrieve data

Check validity

Compute gain
according to
noise

Measure
noise/ambient

Error

Initialization

Read scaled
data

Push data

Connection
and validity

Data value
conversion

Default transition
True to evaluation
False to evaluation
Transition depends on the availability of the library

Read request

Libraries represented in State Space
Model

Initialization

Wait read

noise
dependent

noise
independentError

Dependent = {true,false}
Rev = {true,false,absent}
S.A = [0,255]
Data = [0,1]
Read_Request = {true,false}
Valid = {true,false}
Data_Calculation(int Data) = R
Read_Data() = [0,1]
Find_Gain() = R

!rev Λ (S.A V !S.A)/

rev = false V S.A = False/

read_request/
 Data = Read_Data();
Valid = Valid_Data(Data);

valid = False/

valid Λ !dependent/

valid Λ dependent/
gain = Find_Gain();

/gain* Data_Calculation(Data)

/ Data_Calculation(Data)

Dependent
Rev
S.A

Connection of Multiple Devices

● These libraries support multiple sensor connections
to a single processor.

● I2C Sensors we are using for the project all have
unique slave addresses that allows multiple
connections to the main processor

● Applications that require multiple sensors can
utilize these libraries without requiring more pins

● Abstract away frontend knowledge required to
utilize multiple sensor data

Components - Network

● Sensor readings are passed to the server using a
lightweight TCP connection.

● Users can access stored data through a mobile
device or desktop.

Components - Local Server

● Acts as TCP server and receives data from sensors
● Relays sensor data to the cloud when possible
● Periodically updates cloud if sensor data is received

during time of no internet access
● Stores data locally on SD card to fortify against

power outages and allow data access despite
internet connectivity

Components - Local Server

Initialization
(WiFi, TCP server,

SD card)
Wait for Client

Update cloud
with any

unsent data

update
 ^ ¬reconnect /

Retry internet
connection

Update data in
cloud

reconnect/

Receive client
data,

update data
locally

internet connectivity/

client ^ ¬reconnect ^ ¬ update/

¬internet connectivity/

Components - Cloud Server

● Deployed to cloud via Heroku
● Allows users to access data regardless of location
● RESTful API provides simple interface for users to

easily query for data they need, making it easy to
build applications upon our architecture

Video/Demo

http://www.youtube.com/watch?v=JET7_olfVKw

Future Plans

● Enclose the boards in rugged cases to improve
robustness.

● Include Central Role bluetooth capability
(dependent on release of S130 SoftDevices mbed
support)

● Include support for uploading applications via
Bluetooth

