Home Automation System

Jacob Minyoung Huh, Jene Li, Michelle Nguyen

What is it?

A home automation framework that aims to remedy the problems of current home automation systems.

- Functional despite lack of internet connectivity
- Simple to use with existing sensors in market
- Easily extendable to any custom sensors
- Easy to build applications over

General System Model

Sensors - Overview

- Low level hardware components used to read data
- Fed toward the main system in which the data is used for higher level applications
- Created libraries for sensors so that it can be easily used for applications.

Sensors - Types

- 1. Carbon Monoxide sensor -MQ-7
- 2. Combustible gas sensor -MQ-2
- 3. Humidity and Temperature Sensor Breakout HIH6130
- 4. Infrared Proximity Breakout VCNL4000
- 5. Luminosity Sensor Breakout TSL2561
- 6. Triple-Axis Digital-Output Gyro Breakout ITG-3000
- 7. SparkFun Barometric Pressure Sensor Breakout- BMP180
- 8. Ultrasonic Range Detector LV-MaxSonar-EZ3
- 9. SparkFun Sound Detector LMV324

Sensors - Communication

- Divided into 2 communication methods
- One set uses I2C protocol, where communication between sensor and processor is made through acknowledgement
- Other set communicate purely through reading analog values of the output pin of the sensor
- According to the type of communication, libraries were created/edited

Basic Model of Libraries for Pure Analog

Read data

Check validity

Measure noise/ambient

Compute gain according to noise

Read scaled data

Basic Model of Libraries for Pure Analog

12C Represented as State Machine

Basic Model of Libraries for I2C

Check sensor address (Slave address)

Check sensor product revision number

Retrieve data

Check validity

Measure noise/ambient

Compute gain according to noise

Read scaled data

Basic Model of Libraries for I2C

Libraries represented in State Space Model

Connection of Multiple Devices

- These libraries support multiple sensor connections to a single processor.
- I2C Sensors we are using for the project all have unique slave addresses that allows multiple connections to the main processor
- Applications that require multiple sensors can utilize these libraries without requiring more pins
- Abstract away frontend knowledge required to utilize multiple sensor data

Components - Network

- Sensor readings are passed to the server using a lightweight TCP connection.
- Users can access stored data through a mobile device or desktop.

Components - Local Server

- Acts as TCP server and receives data from sensors
- Relays sensor data to the cloud when possible
- Periodically updates cloud if sensor data is received during time of no internet access
- Stores data locally on SD card to fortify against power outages and allow data access despite

internet connectivity

Components - Local Server

Components - Cloud Server

- Deployed to cloud via Heroku
- Allows users to access data regardless of location
- RESTful API provides simple interface for users to easily query for data they need, making it easy to build applications upon our architecture

Video/Demo

Future Plans

- Enclose the boards in rugged cases to improve robustness.
- Include Central Role bluetooth capability (dependent on release of S130 SoftDevices mbed support)
- Include support for uploading applications via Bluetooth