
PixelBot
By John Wilkey, Alec Guertin, Chester Chu

EECS 149 - Fall 2014



Overview
Objective for the project

● Design/create a device capable of drawing 
geometric shapes supplied by user input from a 
drawing script.

Materials Used
● m3pi = 3pi (Atmel Atmega AVR microcontroller-

powered robot) + MBED LPC1768 high level 
controller.

● Digital camera with long exposure lens
● Electrical Tape
● C/Python APIs

○ http://developer.mbed.org/cookbook/m3pi#library-and-api
○ http://developer.mbed.org/handbook/mbed-library-

internals#mbed-api
○ http://svn.python.

org/projects/python/trunk/Demo/tkinter/guido/paint.py

http://developer.mbed.org/cookbook/m3pi#library-and-api
http://developer.mbed.org/cookbook/m3pi#library-and-api
http://developer.mbed.org/handbook/mbed-library-internals#mbed-api
http://developer.mbed.org/handbook/mbed-library-internals#mbed-api
http://developer.mbed.org/handbook/mbed-library-internals#mbed-api
http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py
http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py
http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py


Part 1: Line Tracking
● Reflective sensors mounted under the 

m3pi detect electrical tape frame
● Use sensor data to follow frame and 

align m3pi with x-axis
● Search for corners to detect length 

(assuming a square frame)

Frame

m3pi

x-axis

y-axis



Part 2: Drawing
● m3pi receives a series of simplified instructions (see figure)
● Instruction file provides data on coordinates and vectors on a frame with 

defined size
● Parser determines next state (TURN, MOVE, DRAW, FINISH) from next 

line of
● m3pi records overall angle from x-axis, calculates remaining angle needed 

to turn to face new coordinates
● Calculates distance between points and converts to physical distance 

based on measured frame length



Part 3: User Drawing
● User draws with mouse on Tkinter 

window
● Python program generates a grid of 

600 by 600 pixels representing the 
drawing

● Output is read by robot and treated as 
(x,y) coordinate vectors to draw



Modeling

LINE_CAL

FIND_
CORNER REV_TURN

DRAW_INIT

ERROR

PARSE

FINISH

TURN

MOVE DRAW



Error Measurements
● Symptoms

○ Inaccurate turn angles
○ Arc when driving straight
○ Build up error (accumulated 

across multiple instructions
● Sources

○ Caster wheel placement
○ Weight distribution
○ Sensor/Actuator precision
○ Pixelation
○ Scaling
○ Surface Type

Driving Trials: Turning Trials (180°):



Trials/Calibration



Mitigations
● Calibrate turning angle to compensate for biases
● Calibrate forward drive to compensate for motor drift
● Filtering / Smoothing line drawing commands.

○ reduce number of short lines due to pixelation
○ smooth curves and lines into larger

● Issues that remain: Inherent inconsistency of robot’s motions make static 
calibrations less useful
Result: Many drawings are good but can be easily thrown off by a single 
errant turn 



Final Design
● Changes from initial design:

○ What we deemed wouldn’t work and why.
■ The solenoid proved intractable. No reliable way to mount, and 

external power requirements results in too much weight on the 
robot. (9 volt battery ~ 50 oz results in deviation of ~ 3-4 cm/s).

○ What we changed to better make use of the robot’s abilities.
■ A mechanical apparatus was deemed inappropriate for our robot. 

We modified the project to make ‘light-drawings’ using long-
exposure photography; this eliminates mechanical engineering 
obstacles while still preserving the spirit of the project. 



Examples...







Thanks...




