PixelBot

By John Wilkey, Alec Guertin, Chester Chu
EECS 149 - Fall 2014

Overview

Objective for the project

Design/create a device capable of drawing
geometric shapes supplied by user input from a
drawing script.

Materials Used

m3pi = 3pi (Atmel Atmega AVR microcontroller-
powered robot) + MBED LPC1768 high level
controller.

Digital camera with long exposure lens
Electrical Tape

C/Python APIs

http://developer.mbed.org/cookbook/m3pi#library-and-api
o http://developer.mbed.org/handbook/mbed-library-
internals#mbed-api
o http://svn.python.
org/projects/python/trunk/Demo/tkinter/quido/paint.py

http://developer.mbed.org/cookbook/m3pi#library-and-api
http://developer.mbed.org/cookbook/m3pi#library-and-api
http://developer.mbed.org/handbook/mbed-library-internals#mbed-api
http://developer.mbed.org/handbook/mbed-library-internals#mbed-api
http://developer.mbed.org/handbook/mbed-library-internals#mbed-api
http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py
http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py
http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py

Part 1: Line Tracking

. _ 4 Frame

e Reflective sensors mounted under the y-axis

m3pi detect electrical tape frame
e Use sensor data to follow frame and

align m3pi with x-axis
e Search for corners to detect length

(assuming a square frame)

-«
>

)

X-axis

Part 2: Drawing

e m3pi receives a series of simplified instructions (see figure)

e Instruction file provides data on coordinates and vectors on a frame with
defined size

e Parser determines next state (TURN, MOVE, DRAW, FINISH) from next
line of

e m3pi records overall angle from x-axis, calculates remaining angle needed
to turn to face new coordinates

e Calculates distance between points and converts to physical distance
based on measured frame length

Part 3: User Drawing

8600 RoboCanvas

e User draws with mouse on Tkinter
window

e Python program generates a grid of
600 by 600 pixels representing the
drawing

e Outputis read by robot and treated as
(x,y) coordinate vectors to draw

600/600

94 98 moveto
102 117 lineto
115 150 lineto
122 169 lineto
130 188 lineto
142 225 lineto
157 264 lineto
166 283 lineto

Modeling

ERROR FINISH
| LINE_CAL DRAW_INIT | PARSE
FIND |
S REV_TURN TURN

CORNER

MOVE DRAW

Error Measurements

e Symptoms

o Inaccurate turn angles

o Arc when driving straight = 1

o Build up error (accumulated 2

across multiple instructions .

e Sources 5

o Caster wheel placement °

o Weight distribution 8

o Sensor/Actuator precision 13

o Pixelation Average Dev.

o Scaling

o Surface Type

Driving Trials:

Dist (mm)

20
10
10
14

N o ~No®

Turning Trials (180°):

Trial {Lenol.)

Average

k.

=W 0 =~ M s W =

Angle

178.5
178.5
177
177
177
178.5
178
176.5
177
178.5
177.65

Trials/Calibration

Mitigations

e Calibrate turning angle to compensate for biases
e (Calibrate forward drive to compensate for motor drift
e Filtering / Smoothing line drawing commands.
o reduce number of short lines due to pixelation
o smooth curves and lines into larger
e Issues that remain: Inherent inconsistency of robot’s motions make static
calibrations less useful

Result: Many drawings are good but can be easily thrown off by a single
errant turn

Final Design

e Changes from initial design:
o What we deemed wouldn’t work and why.

m The solenoid proved intractable. No reliable way to mount, and
external power requirements results in too much weight on the
robot. (9 volt battery ~ 50 oz results in deviation of ~ 3-4 cm/s).

o What we changed to better make use of the robot’s abilities.

m A mechanical apparatus was deemed inappropriate for our robot.
We modified the project to make ‘light-drawings’ using long-
exposure photography; this eliminates mechanical engineering
obstacles while still preserving the spirit of the project.

Examples...

Press and hold with the mouse to draw

RoboCanvas

Press and hold with the mouse to draw

Thanks...

A

