PixelBot

By John Wilkey, Alec Guertin, Chester Chu EECS 149 - Fall 2014

Overview

Objective for the project

 Design/create a device capable of drawing geometric shapes supplied by user input from a drawing script.

Materials Used

- m3pi = 3pi (Atmel Atmega AVR microcontrollerpowered robot) + MBED LPC1768 high level controller.
- Digital camera with long exposure lens
- Electrical Tape
- C/Python APIs
 - http://developer.mbed.org/cookbook/m3pi#library-and-api
 - http://developer.mbed.org/handbook/mbed-library-internals#mbed-api
 - http://svn.python.
 org/projects/python/trunk/Demo/tkinter/guido/paint.py

Part 1: Line Tracking

- Reflective sensors mounted under the m3pi detect electrical tape frame
- Use sensor data to follow frame and align m3pi with x-axis
- Search for corners to detect length (assuming a square frame)

Part 2: Drawing

- m3pi receives a series of simplified instructions (see figure)
- Instruction file provides data on coordinates and vectors on a frame with defined size
- Parser determines next state (TURN, MOVE, DRAW, FINISH) from next line of
- m3pi records overall angle from x-axis, calculates remaining angle needed to turn to face new coordinates
- Calculates distance between points and converts to physical distance based on measured frame length

Part 3: User Drawing

- User draws with mouse on Tkinter window
- Python program generates a grid of 600 by 600 pixels representing the drawing
- Output is read by robot and treated as (x,y) coordinate vectors to draw

Modeling

Error Measurements

Symptoms

- Inaccurate turn angles
- Arc when driving straight
- Build up error (accumulated across multiple instructions

Sources

- Caster wheel placement
- Weight distribution
- Sensor/Actuator precision
- Pixelation
- Scaling
- Surface Type

Driving Trials:

8 20
20
10
10
14
8
6
7
6
8
9.7

Turning Trials (180°):

Trial (Lenol.)	Angle
1	178.5
2	178.5
3	177
4	177
5	177
6	178.5
7	178
8	176.5
9	177
10	178.5
Average	177.65

Trials/Calibration

Mitigations

- Calibrate turning angle to compensate for biases
- Calibrate forward drive to compensate for motor drift
- Filtering / Smoothing line drawing commands.
 - reduce number of short lines due to pixelation
 - smooth curves and lines into larger
- Issues that remain: Inherent inconsistency of robot's motions make static calibrations less useful

Result: Many drawings are good but can be easily thrown off by a single errant turn

Final Design

- Changes from initial design:
 - What we deemed wouldn't work and why.
 - The solenoid proved intractable. No reliable way to mount, and external power requirements results in too much weight on the robot. (9 volt battery ~ 50 oz results in deviation of ~ 3-4 cm/s).
 - What we changed to better make use of the robot's abilities.
 - A mechanical apparatus was deemed inappropriate for our robot. We modified the project to make 'light-drawings' using longexposure photography; this eliminates mechanical engineering obstacles while still preserving the spirit of the project.

Examples...

Thanks...

