
Team: GoRTU
Jisoo Kim, Jiewen Sun, Pierre Karashchuk, Baihong Jin

Mentor: Michael Zimmer

Real-time LED Music Visualizer

Motivation
● LED Music Visualizer

○ Generating sound with square waves / MIDI
○ 7 LED strips representing different notes
○ Corresponding LED strips glowing with the music

● RTU: FlexPRET
○ Efficient
○ Precise timing control
○ Multitasking

Results

http://www.youtube.com/watch?v=0OuSvTmBmSQ

WorkFlow

FlexPRET
● Timing control is not an easy task on conventional processors

○ Using timed interrupt as well as other complex mechanisms
● FlexPRET - Better timing control enabled from the architecture level

○ Exploiting cycle-level accuracy (~10ns on 100MHz FlexPRET)
○ Better isolation between different threads
○ More user-friendly programming interfaces

time = get_time(); // Get current time
delay_ns(10000);
delay_until(time+100000);

Sound Generation

● Method 1: Generate sound with square wave
○ toggling GPIO pin with certain frequencies for

different notes
○ using arrays for period and duration of each note

Sound Generation
● Method 2: Generate sound on computer using MIDI

○ send bytes according to MIDI protocol
■ asynchronous serial interface
■ fixed to 31.25 kbit/sec bitrate
■ currently using MIDI channel 3
■ send least significant bit first

○ sequence of 3 bytes for note on/off
■ note on/off + MIDI channel (e.g. 0x93)
■ note pitch (e.g. 0x40)
■ velocity 0-126 (can be translated into volume)

Note on for channel 3:
0x93 -> 1001 0011
actual sequence: 0 1100 1001 1

Song Pattern Generation

● Songs are represented as sequence of notes and
durations (in second)

● Using a python script, we convert the pattern into
several arrays where each contains information for
duration and notes in different format (e.g. number of
cycles, period in nanoseconds, MIDI pitch
representation)

A4 0.70
Mute 0.05
A4 1.5
G4# 0.75
G4 0.75

unsigned int note[SONG_LENGTH] = {1136363, 50000000, 1136363,
1203948, 1275510};
unsigned int duration[SONG_LENGTH] = {154, 1, 330, 155, 147};
unsigned int duration_ns[SONG_LENGTH] = {349999958, 50000000,
749999910, 373224035, 374999940};
char note_byte[SONG_LENGTH] = {0x45, 0, 0x45, 0x44, 0x43};

unsigned int note[SONG_LENGTH] = {1136363, 50000000, 1136363,
1203948, 1275510};
unsigned int duration[SONG_LENGTH] = {154, 1, 330, 155, 147};
unsigned int duration_ns[SONG_LENGTH] = {349999958, 50000000,
749999910, 373224035, 374999940};
char note_byte[SONG_LENGTH] = {0x45, 0, 0x45, 0x44, 0x43};

A4 0.70
Mute 0.05
A4 1.5
G4# 0.75
G4 0.75

NeoPixel Spec

Source: Tim’s Blog
https://cpldcpu.wordpress.
com/2014/01/14/light_ws2812-library-v2-
0-part-i-understanding-the-ws2812/

Source: WS2812 Datasheet

Real tolerance: +/- ~215 ns

https://cpldcpu.wordpress.com/2014/01/14/light_ws2812-library-v2-0-part-i-understanding-the-ws2812/
https://cpldcpu.wordpress.com/2014/01/14/light_ws2812-library-v2-0-part-i-understanding-the-ws2812/
https://cpldcpu.wordpress.com/2014/01/14/light_ws2812-library-v2-0-part-i-understanding-the-ws2812/
https://cpldcpu.wordpress.com/2014/01/14/light_ws2812-library-v2-0-part-i-understanding-the-ws2812/

Neopixel Timing

Neopixel Timing

How many times can we set LEDs between
notes?
~30us per LED
17*6 = 102 LEDS
102 * 30 = 3060 us = ~3ms per update
~100ms per note so about 33 updates

Using updated timing, we can send signals 7
times faster, so we can 33*7 = 231 updates

Simulator

Neopixel Driver

http://www.youtube.com/watch?v=7isyUZ9c6vM

Acknowledgement
Sincere appreciation towards our
Professors, GSIs, and especially
our nice mentor - Michael Zimmer.

Thank you for listening. Go Bears!

