Real-time LED Music Visualizer

Team: GoRTU
Jisoo Kim, Jiewen Sun, Pierre Karashchuk, Baihong Jin

Mentor: Michael Zimmer

Motivation

- LED Music Visualizer
 - Generating sound with square waves / MIDI
 - 7 LED strips representing different notes
 - Corresponding LED strips glowing with the music

- RTU: FlexPRET
 - Efficient
 - Precise timing control
 - Multitasking

Results

WorkFlow

FlexPRET

- Timing control is not an easy task on conventional processors
 - Using timed interrupt as well as other complex mechanisms
- FlexPRET Better timing control enabled from the architecture level
 - Exploiting cycle-level accuracy (~10ns on 100MHz FlexPRET)
 - Better isolation between different threads
 - More user-friendly programming interfaces

Sound Generation

- Method 1: Generate sound with square wave
 - toggling GPIO pin with certain frequencies for different notes
 - using arrays for period and duration of each note

Sound Generation

- Method 2: Generate sound on computer using MIDI
 - send bytes according to MIDI protocol
 - asynchronous serial interface
 - fixed to 31.25 kbit/sec bitrate
 - currently using MIDI channel 3
 - send least significant bit first
 - sequence of 3 bytes for note on/off
 - note on/off + MIDI channel (e.g. 0x93)
 - note pitch (e.g. 0x40)
 - velocity 0-126 (can be translated into volume)


```
Note on for channel 3:
0x93 -> 1001 0011
actual sequence: 0 1100 1001 1
```


Song Pattern Generation

- Songs are represented as sequence of notes and durations (in second)
- Using a python script, we convert the pattern into several arrays where each contains information for duration and notes in different format (e.g. number of cycles, period in nanoseconds, MIDI pitch representation)

```
A4 0.70
Mute 0.05
A4 1.5
G4# 0.75
G4 0.75
```



```
unsigned int note[SONG_LENGTH] = {1136363, 50000000, 1136363,
1203948, 1275510};
unsigned int duration[SONG_LENGTH] = {154, 1, 330, 155, 147};
unsigned int duration_ns[SONG_LENGTH] = {349999958, 50000000,
749999910, 373224035, 374999940};
char note_byte[SONG_LENGTH] = {0x45, 0, 0x45, 0x44, 0x43};
```


A4 0.70 Mute 0.05 A4 1.5 G4# 0.75

G4 0.75

unsigned int note[SONG_LENGTH] = {1136363, 50000000, 1136363,
1203948, 1275510};
unsigned int duration[SONG_LENGTH] = {154, 1, 330, 155, 147};
unsigned int duration_ns[SONG_LENGTH] = {349999958, 50000000,
749999910, 373224035, 374999940};
char note byte[SONG_LENGTH] = {0x45, 0, 0x45, 0x44, 0x43};

NeoPixel Spec

Data transfer time(TH+TL=1.25μs±600ns)

ТОН	0 code ,high voltage time	0.35us	±150ns
T1H	1 code ,high voltage time	0.7us	±150ns
T0L	0 code , low voltage time	0.8us	±150ns
T1L	1 code ,low voltage time	0.6us	±150ns
RES	low voltage time	Above 50μs	

Sequence chart:				
0 code	T0H T0L			
1 code	T1H			
RET code	Treset			

Source: WS2812 Datasheet

Timing WS2812B	Timing WS2812	WS2812 Cycles
62.5 ns - 563 ns	62.5 ns - 500 ns	<3
≥ 625 ns	≥ 563 ns	>3
≥ 1063 ns	≥ 875 ns	>5
~ 208 ns	~ 166 ns	1
~ 416 ns	~ 333 ns	2
~ 832 ns	~ 666 ns	4
> 9 µs	> 10.8 µs	-
	62.5 ns - 563 ns ≥ 625 ns ≥ 1063 ns ~ 208 ns ~ 416 ns ~ 832 ns	62.5 ns - 563 ns 62.5 ns - 500 ns ≥ 625 ns ≥ 563 ns ≥ 1063 ns ≥ 875 ns ~ 208 ns ~ 166 ns ~ 416 ns ~ 333 ns ~ 832 ns ~ 666 ns

Source: Tim's Blog

https://cpldcpu.wordpress. com/2014/01/14/light_ws2812-library-v2-

<u>0-part-i-understanding-the-ws2812/</u>

Real tolerance: +/- ~215 ns

Neopixel Timing

Neopixel Timing

How many times can we set LEDs between notes?

~30us per LED

17*6 = 102 LEDS

102 * 30 = 3060 us = ~3 ms per update

~100ms per note so about 33 updates

Using updated timing, we can send signals 7 times faster, so we can 33*7 = **231 updates**

Simulator

Neopixel Driver

Acknowledgement

Sincere appreciation towards our Professors, GSIs, and especially our nice mentor - Michael Zimmer.

Thank you for listening. Go Bears!

