
Robot Jousting
Alexander Cruz, En Lei, Sunil Srinivasan,
Darrel Weng

A two-player interactive jousting game involving wheeled robots

Project Goal
● Create a physical, interactive ‘jousting’ game using

wheeled robots
○ Meet our ‘knights’
○ Player knight (Sir Trap of Zoid)
○ AI knight (Sir Tri of Angle)

The Game
● Two knights constrained to a Game Field will

fight for honor
● Each robot has a hitbox, a joust, and 3 ‘lives’

● Last robot standing wins the game!

Implementation
Vision

‘Sense’ game field

AI Control
Greedy algorithm

Wiimote Control
Bluetooth

AI Bot
(User-control option)

Player Bot
Wiimote only

Jousting Robots

Our Setup

Vision

User Control

User Robot

AI/Vision Center

AI Robot

Part I - Robot Knights

Robots: Design
● Main Design:

○ Each robot requires a joust and a hitbox (shield)
● Modeling game mechanics

○ Power-ups: detection & use
hall sensor + magnets

○ Hit box & Life: implementation and actuation
push button + RGB LED on a “shield”

● Control & Hardware
○ PWM, serial communication

Robots: State Machine

Hit
tick’(t) = 1

Play
tick’(t) = 0

PwrUP
tick’(t) = 1

Inputs: Hit, Pwr: Pure

Outputs: redLED: Pure

Variables: tick, lifeLED

hit/redLED
lifeLED--, tick = 0

tick = 2/!redLED

Pwr/redLED
tick = 0

tick = 4/!redLED

Robots: Hardware Layout

Source: Basic Layout Created using Paintbrush

● Player Knight:
○ CZ-HC-05 gomcu Bluetooth boards
○ PL2303HX USB To TTL To UART Converter
○ FRDM KL25Z mBed
○ Radio Shack AA’s

● AI Knight:
○ XBee Series 1 radio by DigiKey
○ Sparkfun XBee Explorer USB
○ Arduino Uno microcontroller
○ Tenergy 7.4V 2200mAh Li-Ion Battery

● Shared Hardware:
○ Pololu DRV8833 Dual Motor Driver Carrier
○ Pololu Adjustable Step-Up/Step-Down Voltage

Regulator S7V8A
○ Sunkhee Hall Effect Sensor
○ Motors+chassis from Emgreat Motor Robot Kit

● Different hardware because we wanted to explore
using mBed and Bluetooth (vs. Arduino experience)

http://www.pololu.com/product/2130
http://www.pololu.com/product/2118
http://www.pololu.com/product/2118
http://www.pololu.com/product/2118
http://www.pololu.com/product/2118

● DC motors from kit produced an unexpectedly huge
magnetic field
○ rendered “power-up” mechanic infeasible, as hall

sensors would respond to motors
○ created significant interference with HC05

communication (mostly resolved)
● We originally wanted to use a WiiMote, but it turns out

that the HC05 is programmed to use only SSP...

Robots: Pitfalls

Robot Knights
Player Knight AI Knight

Part II - Vision

Vision: Motivation
● Our AI knight needs to be able to see!
● Forward-mounted camera doesn’t provide

enough information
● Overhead camera as part of the field
● Shape tracking (markers) to determine robot

position

Vision: System
● Image stream from Phillips webcam attached to laptop
● OpenCV Python bindings

○ Get contours and orientations of templates
○ Grayscale image, thresholded to black/white
○ Detect contours in B/W image
○ matchShapes to ‘score’ contours for matches
○ Relative orientation (from template) by angle subtraction modulo

360 (orientation of a contour determined by vector from centroid to
center of minimal enclosing circle)

○ Accounts for noise and tiny shape match errors
● “ShapeTracker” class/interface for use by other components
● Here’s an example of what the system sees…

Vision: Example
Templates, B/W image

Source: Images generated by hand, ShapeTracker program

Vision: Issues
● 180° problem

○ Moments - shape descriptors
○ Can only determine orientation of major axis of shape
○ Naive method worked better (centroid to enclosing

circle center)
● Contour parents matching incorrectly

○ Discarded any contours with children (only the
children were examined) - works for our simple
shapes

Part III - AI

AI: Greedy Algorithm
● Our AI uses a greedy/aggressive behavior

algorithm that directs the AI knight to actively
pursue and try to hit the player knight

● We model our algorithm using a state
machine framework coded in Python

AI: Inputs
● The vector orientations of both robots (from

vision module)
● The relative angles of the vector orientations

of the robots (calculated)
● The distance between the two robots

(calculated)

AI: Output
● The next move command for the AI knight
● Possible moves

○ “Go Forward”
○ “Rotate/Turn Left in Place”
○ “Rotate/Turn Right in Place”
○ “Stop”

AI: Evaluation
● Use the given inputs to calculate the relative

position and orientation of the player knight
with respect to the AI knight

● In general, pursue the player knight
○ E.g. if the user is to the left, AI turns left; if the user is

in front, AI goes forward

AI: Evaluation
● The one special case is when the AI bot is in

the potential hit zone of the user bot

Source: Created using Paintbrush

AI: Evaluation
- If the AI finds itself in the hit zone, it adjusts

its orientation so its joust is pointing towards
the scoring region.

Source: Created using Paintbrush

AI: State Machine Diagram

Source: Created using LaTex, TikZ package

AI: Demonstration
● Determine desired

location
○ Path to location
○ Position joust

appropriately

http://www.youtube.com/watch?v=9gzAPL0tSmk

Full Demonstration
● We’ll have a demo

later today!
● Here’s a video in

the meantime
● Try not to snicker

http://www.youtube.com/watch?v=cyf99NSay7c

References
● OpenCV

○ http://opencv.org/
● Python

○ http://python.org/
● Anaconda by Continuum Analytics

○ http://store.continuum.io/cshop/anaconda/
○ Python distribution, NumPy

● ARM mBed
○ http://developer.mbed.org/

● Arduino
○ http://arduino.cc/

http://opencv.org/
http://opencv.org/
http://python.org/
http://python.org/
http://store.continuum.io/cshop/anaconda/
http://store.continuum.io/cshop/anaconda/
http://developer.mbed.org/
http://developer.mbed.org/
http://arduino.cc/
http://arduino.cc/

Questions/Comments?

