
1

EECS 249A Project Report: CubicHand
Kevin Albers, Robert Bui, José Oyola, Naren Vasanad

I. INTRODUCTION

This project aimed at creating an interactive light-emitting
diode (LED) cube that can be controlled with hand gestures
using a data glove. The motivation behind this project was to
explore technologies in the realm of the Internet of Things
(IoT) to create an application controlled through the internet
using a model-based approach. A data glove is used for
gesture recognition as its sensors play an important role in IoT
applications, especially in wearable technology. The project
models the turning on and off of LEDs based on the position
and movement of the data glove. The goal is to accurately
monitor the data gloves orientation and movement and display
a smaller cube of LEDs (referred to a square of LEDs to
avoid confusion) on the cube that will be updated based
on information collected from the bend sensors, gyroscope,
and the accelerometers of the data glove through wireless
communication over Wi-Fi. In particular, the movement of
the glove translates to movement of the square of LEDs in
the cube, and the bending of different fingers in the glove
translates to color and size changes of the square. The structure
of the software was designed to be modular to serve as a basis
for future work in code generation for embedded devices.

II. FOCUS AREAS

A. Real-Time Networks

As shown in Fig 1 in the Appendix, the system consists of a
real time network where packets of data are being transmitted
over Wi-Fi using the TCP/IP socket communication protocol.
The data glove continuously sends sensor data to the laptop
which then routes the data to an mbed device, the Freescale
FRDM-KL25Z. The mbed is connected to a CC3000 Wi-
Fi module which allows it to receive packets of data using
socket communication. Based on the information stored in the
packets, the mbed device runs algorithms necessary to interpret
the raw sensor data and update the LED cube.

B. Design Methodologies for Embedded System Design

The entire system can also be modeled as a synchronous
data-flow (SDF) model with each part of the system represent-
ing an actor that fires when triggered with a certain number
of inputs. An SDF clearly depicts the modules present in the
system and shows how the entire structure has to be sequential.
The SDF will be explained in more detail in Section III.

C. Modeling of Physical Dynamics

Since the data glove gives only raw sensor data, sensor data
needed to be measured for the minimum and maximum values
along with the precision determine how different gestures
should be classified. Fig 2 in the Appendix shows these values

for the data glove. As shown in Figure 2, the finger sensor
data had a step size of 1 and ranged from 0 to 1000, giving
an accuracy of 0.1%. Also, the angles for roll, pitch, and yaw
had a precision of 0.01 degrees and varied between -90.00 and
+90.00 degrees.

Roll, pitch and yaw are obtained from the quaternion
data. Quaternions represent the accelerometer and gyroscope
readings in the form of complex numbers and can then be
converted into angular position using the following formulae:

roll = tan−1

(
2(q00q11 + q22q33)

1− 2(q11q11 + q22q22)

)
180

π

pitch = sin−1 (2 (q00q22 − q33q11))
180

π

yaw = tan−1

(
2(q00q33 + q11q22)

1− 2(q22q22 + q33q33)

)
180

π

q00, q11, q22 and q33 represent the four quaternion values
sent by the data glove. The quaternion data also needs to be
normalized since the data sent by the glove is in the range of
0 to 32768 (216). Hence, the sensor data received from the
data glove is first divided by 216 before it is used in the above
formulae.

This sensor data is then filtered and fed into a gesture
recognition module. These topics will be covered in more
detail later in the document.

III. MODEL-BASED DESIGN

A. Overall Dataflow Model

The system was modeled using a SDF as shown Fig 3, Fig 4,
Fig 5, and Fig 6.

B. Data Glove

As shown in Fig 3 and Fig 4 in the Appendix, the first actor,
“Glove”, gives three angular positions (roll, pitch and yaw)
with the bend sensor data. This actor can be further divided
into another data flow model that consists of a “Wi-Fi Socket”
actor that receives raw packets via TCP/IP communication and
sends it to a packet parser actor that interprets the raw packets
and converts them into bend sensor and angular data. The Wi-
Fi actor is blocked and cannot fire until a packet has been
received via Wi-Fi. The packet parser produces one packet on
each of its output ports containing information about finger
bend and angle of movement.

C. Correction

The second actor is “Correction” as shown in Fig 5.
“Correction” is a finite state machine that consists of two
states: train and filter. The sensor data is normalized before



2

it can be fed to “Gesture Recognition”. Since the initial state
of the sensors may not be the same on every reset of the data
glove, a reference zero is required in order to have consistent
models for gesture recognition. After the data is trained, it can
be smoothened using filters such as alpha filters or Kalman
filters to eliminate jitters in sensor data.

D. Gesture Recognition
The third and fourth actors deal with gesture recognition.

For every ten packets produced by “Correction”, “Gesture
Recognition” fires once. This procedure is used to down
sample data obtained from the data glove. This allows for
gestures to be interpreted more accurately. The project cur-
rently supports the use of ten gestures based on thresholds
shown in Figure 7 in the Appendix. The “Tilt Detection”
actor uses angular data to determine if the LED square should
move in the x, y or z axis depending on roll, yaw and pitch,
respectively. The LED square moves if the roll, pitch, or yaw
becomes greater than +/- 10 degrees from the calibrated initial
position, for a total of six gestures. Figure 8 shows how data
glove movements correspond to movements on the LED cube.
“Gesture Recognition” reads the bend sensor data to determine
if the size or hue of the cube should be changed based on
which fingers are bent. The thumb is considered to be bent if
the value obtained from the data glove exceeds 200 ADC units.
Whereas, the other four fingers are considered to be bent if the
value from the data glove exceeds 350 ADC units. Figure 9
shows the four gestures based on the bend sensors. By keeping
fingers 2 and 3 unbent and the others bent, the size of the LED
square can be increased, while keeping only finger 3 unbent
will decrease the size of the cube. The color of the LED square
is based on how bent finger 3 was when the finger 4 is unbent
and the other fingers are bent. Figure 10 shows how gestures
are recognized in the “Gesture Recognition” actor.

E. Update Cube
The final actor, “Update Cube”, fires for every output from

the gesture recognition block. Since it is an actor that does not
produce any tokens, it is a terminal actor. It requires a total of
3 tokens at the input: hue, change in size, change in the x-axis
direction, change in the y-axis direction, and change in the z-
axis direction as one packet. Figure 6 shows a flow diagram
for this actor. As shown in the diagram, “Update Cube” has
several actors within it: one for the setting color based on hue,
one for incrementing or decrementing the size based on the
size input, and one for moving the square based on the changes
in the x, y and z-axis directions. A final actor inside “Update
Cube”, called cubeUpdate, will handle the updating of the
LED cube itself by clearing the previous state of the square
from the LEDs and re-drawing the new state of the square
based on the new values for size, color, and position. In order
to better display the 3D effect, the square of LEDs is drawn
on all sides of the cube, with the brightness corresponding to
the distance between the square and the surface of the cube.
This allows for having the lighted square be “inside” the cube
without being attached to any of the surfaces. Figure 11 shows
flow diagrams for each of the first three actors, and Figure 12
shows the flow diagram for the final actor.

IV. HARDWARE

A. Data glove
The VirtualRealities DG5 Dataglove is used to determine

the state of the users hand based on its internal sensors.
Accelerometer and gyroscope data are used to output rotational
quaternion data internally, which is sent to a client over Wi-Fi,
along with finger bendness data as a percentage. As mentioned
before, the quaternion data was used to determine movement
on the cube, and the bend sensor data determined the gestures.
The Dataglove offered a simple packet structure for data sent
over the TCP Wi-Fi network. The structure is as follows:

[Header ($)] [Command] [Package Length] [Package Data]
[Checksum] [End Character (#)]

A simple start command begins streaming requested data
from the the Dataglove over a Wi-Fi network. The data packet
provides information not only about quaternion and finger
sensor data, but also a clock counter that timestamps when
the data was logged. For example, while receiving quaternion
and bend sensor data from the data glove, the received packet
size is 42 bytes, 8 bytes of header information and 34 bytes
of actual sensor data.

B. mbed
The mbed device, a Freescale FRDM-KL25Z, was chosen

to be the central processor for the application. It receives the
information transmitted from the Dataglove to the CC3000
and processes this information to determine the status of
the Neopixel LED strips that form the cube. This embedded
platform was chosen because it provides the low level timing
control required for the NeoPixels and a processor faster
than competing devices such as the Arduino. It is also a
new platform with an online development environment based
around applications for the IoT realm which this project is
based.

C. Neopixel LEDs
The Neopixel LED strip was used to create three surfaces

of the 10x10x10 cube. The LEDs are controlled by an mbed
using the Multi-WS2811 library by Richard Thompson. This
library is inherently limited to a maximum of 240 LEDs per
strip due to the 16 kB ram on the device. Since the LED
cube requires 300 LEDs, two digital pins on the mbed device
are used. One pin controls a strip of 100 LEDs (10 strips of
10 LEDs connected) for the top of the cube and another pins
controls a strip of 200 LEDs (10 strips of 20 LEDs connected)
that is shared between the two sides of the cube. The library
allows the mbed to individually address each LED and set
each color with 8 bits for per color (RGB).

D. CC3000
The CC3000 Wi-Fi chip connected to the mbed works

as a server when connected to the client PC over a LAN
created by the team. This is being done by using the
cc3000 hostdriver mbedsocket library by Martin Kojtal. The
Dataglove sends quaternion and bend sensor packets to the
client PC, which forwards these packets to the mbed for
parsing.



3

V. SOFTWARE

A. Version control

Software version control was done by using the built-in
version control on the mbeds online developer site. Version
control helped keep track and merge the code from different
aspects of the project that were developed in parallel. It was
important that the code was maintained in a structured format
in order to be able to revert back to changes. Code created
locally to create a client on the computer in order to emulate
a communication network with an intermediary system was
maintained using Github. The links to the mbed project and
the Github repository are mentioned in the Appendix.

B. C/C++

C/C++ was used for the development of the software for
programming the mbed device and in the creation of the
TCP/IP client on the computer. Using object oriented pro-
gramming concepts, classes were developed for each of the
modules. The code was structured such that each of the actors
was an object of a class. A single function of the class would
be run for firing the actor. This function returns data which
needs to be sent to the following actor in the chain. Such
structuring will allow ease in replacement of blocks or actors.
It will also make automatic code generation from actor models
easier for future development as will be discussed later in the
report.

VI. RESULTS

A. Wi-Fi

The Wi-Fi connection to the glove turned out to be the
most troublesome part of the system in terms of latency. The
data glove required the use of a TCP connection in order to
receive data from the glove. This can cause problems with
real time systems in embedded systems. The system on the
mbed device is triggered by receiving packets from the data
glove, which means the timing of the entire system is reliant
on receiving data over Wi-Fi. When packets are missed, TCP
will request for them to be redelivered, and wait for the new
packets to arrive even if new packets have arrived, so that they
are not received out of order. This causes delays up to 1 to 2
seconds which will cause the application to freeze occasionally
throughout the process.

In order to see the consistency of data delivery from the
Dataglove, an LED on the mbed was set to blink for every
50 packets received. Since the PC client sends 50 packets per
second, this will blink once a second. When observed during
runtime, the LED blinked inconsistently. For short periods it
would blink at a constant 1 Hz, then it would slow down or
stop blinking for a moment, then recover by blinking faster
over the next period, which reflects the problems that would
be expected by using TCP. Preferably, UDP should be used
for this type of application, since it will simply ignore dropped
packets. The DataGlove provides time data which can then be
used to properly time the packets and adjust the algorithm for
any dropped packets detected by this method.

B. LED Cube

The LED cube, shown in Figure 13, was built with black
foam board cut with an X-Acto knife and glued together with
hot glue. The cube was designed to have all LEDs on all
three sides equally spaced, to maintain the 3D illusion of the
lighted square moving inside of the cube. As mentioned in the
Hardware section, the Neopixel LED strips were cut into 10
strips of 10 for the top of the cube, and 10 strips of 20 for the
two sides of the cube. Female headers were soldered to each
of the strips to connect them together. For each of the strips,
double-sided tape was laid out on the foam board to attach
the strip. The 10 strips of 10 for the top of the cube were
were then wired together using black hookup wire, as were
the 10 strips of 20 for the sides of the cube. Both of these
longer strips were then connected to the mbed to control the
LEDs. The cube is powered by a 5V wall adapter to provide
the current necessary to power all 300 LEDs simultaneously
at full brightness.

C. Final Project Demo

For the final project demo, the team showcased the inter-
action between the data glove and the LED cube. The two
wifi enabled devices communicated through a computer on
a LAN network. The data glove transmits quaternion and
bend sensor data to the mbed device using TCP/IP protocol.
The mbed interprets the data through gesture recognition to
modify and move an LED square. For an added 3D effect,
the lighted square is always shown on all three sides of the
cube, with the brightness varying based on the distance from
the square to the surface of the cube. The wearer of the data
glove can successfully move the lighted square on all three
axes of the cube and change its size and color based on the
gestures mentioned previously. The demo can be viewed in
the YouTube link mentioned in the Appendix.

VII. CONCLUSION

The project involved understanding constraints of real time
systems through TCP/IP communication, modeling physical
systems through gesture recognition and also in creating a
model-based structure to the entire system using SDF models.
These concepts helped in solving the problem in the right
way. It also helped in making the system scalable and allowed
introduction of new concepts into the flow much more easily.
The final application was successful and showcased these
concepts well by using Wi-Fi communication to successfully
transmit sensor data and interpret the data to classify gestures
for controlling an LED cube.

VIII. FUTURE PLANS

The CubicHand project is a part of a larger project for
code generating applications for the IoT. Since the project
was constructed using a model based structure, it serves as
basis of comparison for future code generation. Using code
generation concepts for SDF models, the same application
should be reproducible.

Another focus of the project is on improving gesture recog-
nition using machine learning. The gestures in the current



4

model are simple and can be extended and made more
robust by using machine learning algorithms. By performing
unsupervised learning on sensor data collected from the data
glove, it will be possible to minimize errors and maximize
accuracy of gestures.

Finally, to be able to handle gestures more effectively and
avoid connectivity problems, a data glove would be built to
enable communication using Wi-Fi and also Bluetooth Low
Energy (BLE) to evaluate different communication technolo-
gies. The data glove would include individually-selected bend
sensors, accelerometers, gyroscopes and IMUs to obtain better
orientation information.



5

IX. APPENDIX

Video: https://www.youtube.com/watch?v=eEFVdnKhD9I
mbed Code: https://developer.mbed.org/teams/Model-Based-Team/code/CubicHandServer/
Github: https://github.com/calnaren/CubicHand.git

Fig. 1: Real-time TCP/IP Network

Fig. 2: Sensor Data Specifications

Fig. 3: Dataflow Diagram for CubicHand

https://www.youtube.com/watch?v=eEFVdnKhD9I
https://developer.mbed.org/teams/Model-Based-Team/code/CubicHandServer/
https://github.com/calnaren/CubicHand.git


6

Fig. 4: Glove SDF

Fig. 5: Correction Actor

Fig. 6: Update Cube Actor



7

Fig. 7: Gesture Recognition Thresholds

Fig. 8: Gestures based on Quaternion Data

Fig. 9: Gestures based on Bend Sensors



8

Fig. 10: Gesture Recognition Flow Diagram



9

Fig. 11: Flow diagrams for Move, Size and Color



10

Fig. 12: CubeUpdate flow diagram

Fig. 13: The LED Cube


	Introduction
	Focus Areas
	Real-Time Networks
	Design Methodologies for Embedded System Design
	Modeling of Physical Dynamics

	Model-Based Design
	Overall Dataflow Model
	Data Glove
	Correction
	Gesture Recognition
	Update Cube

	Hardware
	Data glove
	mbed
	Neopixel LEDs
	CC3000

	Software
	Version control
	C/C++

	Results
	Wi-Fi
	LED Cube
	Final Project Demo

	Conclusion
	Future plans
	Appendix

