Driving Dancing Robots
Anthony Castro, Stephen Martinis, Vashisht

System Model

Inputs: song: {Fireflies,
method: pure
gameOver: pure
quit: pure

Head Over Heels, absent}

Continuous Variables:
currSpeed: Z
currDirection:

{Forward, Backward,

Madhavan
. . . . User & Lea
Project Goal: To create a fun, interactive time Motion P
trial-based game where a user will control a USB
robot based on hand movement.
GUI
. Python
Equipment:
* iRobot Create Laptop
* Logic Level Converter Bluetooth
g Transmitter Bluetooth
* mbed FRDM-KL25Z
e BlueSMiRF Silver ")
. BlueSMiRF Serial
° Leap Motion Connection
¢ Laptop and C++
mbed
. Serial
Below are FSM models for the robot. The first Connection
is of the GUI and iRobot sub-systems and the iRobot and C++
second is a synchronous composition
GUI State Diagram iRobot State Diagram
drive /
init / currSpeed := speed,
song && method / init y 4 currSpeed := 0 currDirection := direction
speed,
Vi Q direction
SETUP PLAY EXIT INACTIVE ACTIVE
gameOver / "
gameOver gameOver /
currSpeed := 0
tquit / quit /
END Inputs: init: pure
drive: pure
gameOver: pure
speed: Z
Inputs: song: {Fireflies, Head Over Heels, absent} direction: {Forward, Backward, absent}
method: pure victory: {true, false, absent}
gameOver: pure
quit: pure Outputs: None
Outputs: gameOver: pure speed: Z init: pure Continuous Variables:
direction: {Forward, Backward, absent} currSpeed: Z
currDirection: {Forward, Backward, absent}
Bluetooth
Packets
Synchronous Composition
song && method / .
currSpeed := 0 drive /
currSpeed := speed,
<4 currDirection := direction
SETUP, INACTIVE PLAY, ACTIVE
gameOver / /
tquit /
gameOver /
SETUP, ACTIVE END, INACTIVE END, ACTIVE
quit /
EXIT, ACTIVE
PLAY, INACTIVE EXIT, INACTIVE {gmmeo—ve/r/—

absent}

In the first composition, the iRobot simply
reacts to the GUI's outputs. The GUI outputs
Bluetooth packets that adhere to the custom
Bluetooth protocol. From there, the mbed
processes these packets with an algorithm
based on the official mbed iRobot tutorial! and
will output the results to iRobot. We can
reduce this composition to form a single
synchronous composition as noted. Because of
general computation time in the GUI and mbed
as well as transmission of data over a wireless
unit, this model will have latency and reactions
will not be perfectly simultaneous. However,
the synchronous composition will accurately
model the behavior of the iRobot and GUL.
Below are the results of measuring end-to-end
latency.

Latency:
The overall average latency of reading a

gesture to the iRobot’s reaction is given by a
summation of the following factors:
* Average Leap Motion latency
* GUI processing time
* Average one way latency over
Bluetooth
* ISR execution time
* State diagram execution time
The following methods were used to measure
to determine approximate latencies.
Procedures were repeated to get an average
reading.
* Average Leap Motion latency:
o Taken from Leap Motion
online documentation
o Approx latency = 30ms
* GUI processing time:
o Compare timestamp
difference when GUI detected
hand placement to when a
Bluetooth packet was sent.
o Approx Avg processing time =
.0303 ms
* Average one way latency over
Bluetooth
o Getround trip time of packet
transmission. GUI sends
packet to BlueSMiRF, mbed
reads packet from BlueSMiRF
via serial connection, sends

Thttp://developer.mbed.org/cookbook/iRobot
-Create-Robot

back to GUI to read. Divide
this value by 2.
o Approx Avg RTT = 48.6 ms
o Approx Avg one way = 24.3
ms
¢ ISR execution time:
o Measure RTT at the beginning
of ISR and again at the end of
ISR. Calculate the difference
between these two readings.
o Approx Avg ISR exec time =
23.8ms
* State diagram execution time:
o Send packet from mbed to
GUI before executing state
diagram and again after
executing. Take the difference
between time stamps from
GUI reads and subtract 2
times the one-way latency.
o Approx Avg state diagram
execution time = 0 ms
* Overall appox avg latency =
78.1303 ms

Since the average latency is approximately
78.1 ms, the composition is not perfectly
synchronous, as the iRobot will react to the
GUI with a slight delay. Nonetheless, The
model accurately shows states that are
unreachable and indicate erroneous behavior
while also showing proper and accurate
behavior of the overall system. For example,
the iRobot should never be ready to drive or
driving while to GUI is set up as indicated by
the unreachable state (SETUP, ACTIVE).
The iRobot should also stop driving after the
game has ended or the GUI has quit as
indicated by the two unreachable states
(END, ACTIVE) and (EXIT, ACTIVE).
We adhered very strictly to these models when
implementing the system and during unit and
integration testing. By using the models, we
were able to locate various bugs in the
hardware such as mismatched voltage levels
and software bugs such as erroneous packets
being sent.

This current model features one-way
communication between the GUI and the
iRobot. Using mathematical calculations and
knowledge of the data packets transmitted to
the iRobot, the GUI is able to predict
approximately the position of the iRobot,
allowing more accurate synchronicity.

In previous iterations of the system model, we

used two-way communication over the d(e) = [Jv(e)dt = vy * (&, — to) + v * (t; — to) + -
Bluetooth channel because of the two
conditions for gameOver: the song has ended To calculate the distance the robot has
or the goal distance has been traveled. The travelled, we periodically sampled the velocity,
former case is handled in the GUJ, but the latter and multiply this by the time since we last
case initially used the distance calculations in sampled the velocity, to get the distance
the iRobot Create interface. Since we had a travelled since we last sampled the velocity, in
serial connection to the iRobot, we could read effect integrating the velocity to get the
the same way we read from the BlueSMiRF, distance travelled.
which meant creating an ISR to read from the
iRobot. According to the iRobot Create To prevent further latency, these computations
interface documentation, the iRobot sends data were initially done on the mbed and utilized
packets periodically every 15 ms. Our GUI the mbed timing libraries. However, we
sends packets according to the period of a discovered that the clock on the iRobot was
quarter note in the song selected (the inverse not functional and did not tick. This led to the
of the beats per minute). Because data came final iteration where the distance calculation is
more frequently from the iRobot than the GUI, in the GUI. Since there would be
the iRobot ISR would constantly execute, synchronization issues, we ran several tests in
preventing the GUI ISR from ever running. We which the iRobot was to travel a fixed distance
did not want to assign priorities to each ISR, as at several combinations of speed gradients
both were equally important in gathering game such as a single fixed speed to changing
information. One potential solution was to speeds. In each experiment, we found that the
implement multithreading where one thread margin of error was no greater than 2 cm from
will listen to data coming in from the iRobot the true goal distance. The distance calculation
and the other will listen to data coming in from is given below:
the BlueSMiRF. Since they would be accessing
shared resources, we would need to Bluetooth Communication:
implement proper locking. Given the status of We created a custom Bluetooth protocol that
our project, time constraints, and perceived obeys the following format:
difficulty of implementing multiple threads [OpCode][Packet Data][Checksum]
and proper synchronization, we decided not to In this format, OpCode is always mandatory
pursue this route and instead moved towards a but Packet Data and Checksum are only
different design. necessary when sending driving data.
Checksum is implemented as a safety
The next iteration featured distance measure against data corruption or packet
calculations based on the time spent traveling loss. In the either case, the given commands
at certain speeds. The mathematical model we are ignored. The model for decoding the
used to track distance is as follows: Bluetooth packets is below
in == drive/
Bluetooth Communication com := in DriveDir " DriveSpeed/
count := count + 1 dir := DriveDir
checksum := checksum + in speed := DriveSpeed
count := 0 count := count + 1
checksum := 0 /\ /\:hecksum := checksum + DriveDir +
DriveSpeed
WAIT | —m S0
s1
data /
count := 0
Continuous Variables: checksum := checgsum.
com: {absent, drive, init, gameOver} v s2 + DriveDir
dir: {Forward, Backward, absent} S3 4 + DriveSpeed
speed: Z
count: {0,1,2,} checksum & OxXFF = 0 / com, speed, dir
checksum: Z checksum := 0
Inputs: in: {absent, drive, init, gameOver} Outputs: com: {absent, drive, init, gameOver}
DriveDir: {Forward, Backward, absent} dir: {Forward, Backward, absent}
DriveSpeed: Z DriveSpeed: Z

data: Z

Hardware Information:
Bluetooth Setup:

To start off we paired one of our computers to
the BlueSMiRF Silver and established an initial
connection so that our python program would
easily pair every time after. The BlueSMiRF
has 5 pins, 4 of which we connected to the
mbed via a breadboard. We set the baud rate
to be 115,200, the recommended level for the
RN-41 chip. We connected VIN and GND pins
on the BlueSMiRF to 3.3 VOUT and GND
respectively on mbed in order to power the
BlueSMiRF. We also connected Tx (transmit)
on the BlueSMiRF to Rx (receive) on the mbed
to allow serial communication between the
mbed and BlueSMiRF.

iRobot Connection:

Since there are three UART ports on the FRDM-
KL25Z and one was used to buffer Bluetooth
data, we use one of the other ports to send data
to the iRobot create. We set a baud rate of
57600 for serial communication, the
recommended rate for iRobot communication.

One thing to note is that the iRobot transmits
data at a 5V level whereas the mbed UART
sends data at a 3.3V level. As a result, we
needed to add logic level converters between
the data connections (Tx and Rx) of the mbed

A - ad
and the iRobot. We used the iRobot battery to
power the mbed at a 5V level. Since the FRDM-

KL25Z supports 5V input, there was no need
for logical level conversion.

Testing:
We gathered various latency data to get

reliable time coordination. This data helped us
address some issues about timing
coordination. Since we used an ISR to read
data from Bluetooth and global variables to
temporarily store Bluetooth data, we needed a
way to ensure that packets were not getting
sent faster than the state machine could
process them. In order to do so, we recorded
the average time of Bluetooth packet echoing
between our computer and mbed and adjusted
for the time taken /0. Taking this account, we
adjusted the time intervals between our
Bluetooth signals to ensure the iRobot would
respond to all data packets recieved.

Conclusion

Overall, we thought this project was a
challenging but fun way to explore various
technologies while also integrating concepts
learned throughout the semester. Using
communication latency statistics to effectively
coordinate ISR timing and state machine
execution, we were able to tackle the issue of
concurrency and make it appear as if the
iRobot synchronously reacts with hand
gestures. In addition, modeling our system as a
concurrent state machine simplified the
implementation of the driving algorithms
helped us identify possible error scenarios. By
analyzing the model for unreachable states
and, in accounting for the possible ways an
error could land our system in one of these
states, were able to ensure reliability of the
overall system. The use of the Leap Motion
kept the project exciting and cutting-edge,
adding ‘hacker’ flair to a very structured
project.

