Deep Blue and Gold

EE149 Final Project by Sean Scofield, Frank Lu, and Arthur Jeng

Project description:

We built a smart chess board that provides both an
Al for a human player to play against as well as
legal moves and hints for the player. The
transparent chessboard has 8 Adafruit Neopixel
strips attached to its underside that are used to light
up each of the squares on the board.

Hardware:
e Arduino Mega 2560
2’ by 2’ Lexan polycarbonate board
64 magnetic reed switches
8 Adafruit Neopixel strips with 24 lights
each
5V, 4A power supply
32 3d-printed chess pieces
32 neodymium magnets
8 8-stage static shift register (CD4021B)

Sensors and Inputs:

Reed Switches

The magnetic reed switches make up the entirety of
the sensors for this project. Each reed switch is
attached beneath a square on the board, and each
row of 8 reed switches is wired to one of the 8
daisy-chained shift registers.

“Open” Reed Switch
Wires Will Not Conduct

Wires Will Conduct
A =

Al
=) .
\ ~=D

J

How a magnetic reed switch works

“Closed” Reed Switch

Each chess piece has a magnet in it, so whenever
a piece is on a square, the switch beneath that
square closes. The state of the reed switches (and
therefore information about the current state of the
pieces on the board) is then read through the shift
registers, and sent to the Arduino.

The state of the chess board is read once per
iteration of the Loop function in the Arduino (each

iteration takes roughly 0.1 to a few seconds. The
Arduino, which is the actuator in this case, receives
each reading as a 64-bit binary string (i.e.
1001010100100010...). This is the input to our
FSM.

Each of the chess pieces are 3d-printed such that magnets
can be placed in each one.

Shift Reqisters
We need to use shift registers because of the issue
of scalability. We have 64 reed switches but not 64
GPIO pins. Limited GPIO pins can either be
resolved by a multiplexer shield on our Arduino or
shift registers. We decided to use shift registers
because
1. Shift registers can be daisy chained,
meaning that we only need 3 GPIO pins
whereas multiplexers will take more pins.
2. we can get all the data pins at the same
time simultaneously despite multiplexers
being faster.

45V 5V

|
iy
=

wwwwwwwwwwwwwwwwwwwwwww

AL

—]
IR

Snippet of the circuit diagram of the shift registers and
voltage dividers.

Each shift register consists of 8 digital input pins, 3
serial-out pins, 1 serial-in pin, 1 clock pin, 1 serial
control pin, 1 supply voltage pin, and 1 ground pin.

The input pins are asynchronous parallel input
pins. It is “parallel” because the shift registers
collect the information on the pins all at once; it is
“asynchronous” because the shift register does all
the data collection at its own pace without
coordinating with the Arduino.

The clock pin is the metronome of the conversation
between the shift register and the Arduino. We set
the clock from from LOW to HIGH to notify the shift
register to change the state of the serial output pin.

The parallel to serial output pin is a “latch” pin.
When the latch pin is HIGH, the shift register
collects the data on the 8 pins. When it’s LOW, it
listens to the clock pin and sends the data serially.

Real-Time Behavior:

The real time behavior aspect of this project is
making sure that our model represents the real
world as closely as possible. For our project, this
means that we continually poll the state of the
board. In each loop() of our code, we continually
call getReading() to get the 64 bit state of the
board.

Finite State Machine:

Before going into detail on our FSM, it is worth
noting that our system is discrete, meaning it has a
countable number of states. The inputs to our
machine are piece positions, and there is a only a
finite number of chess positions. The outputs are
integers representing indices of Neopixel LEDs to
light.

The overall problem is a conceptually simple one:
two players (one being an Al) make moves
completely sequentially, with the guard checks
being implemented as isPiecelLifted, isPiecePlaced,
isLegalMove. However, as we soon found, we were
met with many challenges in our FSM designs and
redesigns to account for “real-world behavior” being
accounted for in our model.

As shown in Figure x, our FSM is deterministic: the
same sequence of moves will lead to the same
sequence of states. An example run of our model
once turning on our microprocessor would be:

e The pieces are not set up correctly, so the
model continually stays the Initial state.

e Once isLegalStart returns true, we move
into the Ready state. If the ready switch is
on, we go into the meat of the FSM.

e StartTurn directs our model into a human
or Al sequence based off the turn global
variable.

e |n human sequence, we must be able to
know the real world state at all times. Thus,
a given move is broken into PieceLifted
and PiecePlaced. This gives the model
more insight into what is actually
happening.

e The Al sequence lights up squares where it
wants to move, and it is up to the human
player to move it.

e At any point, invalid moves or checkmates
make the model go into /nvalidMove and
Checkmate respectively.

This is a relatively simple path conceptually, but
there are many ways the model can be out of sync
with what is happening. For example, the reed
switches will sometimes flick on and off when a
piece is being set. At the end of the first flick, the
model will be going into the Al sequence, but this
state’s getReading() call could be reading an
unwanted flick of the reed.

We encountered many (seriously, a lot!) of these
“real-world” problems, and we had to tackle these
in creative ways in our FSM. To tackle the problem
described above, we had a delay going into the
PiecePlaced to wait for any flickering to die down.

parallel/ Design Methodologies

Model
o .
User Input/
reed switch reading |« User feedback
R — L —

-~

Y

- " (A
_ _) MNeopixel
shift register Arduino Mega lighting

p. . "y

We begin this project by constructing a model that translates
serial inputs of the shift registers from reed switch readings
to neopixel lighting on certain segments. We then use
discrete dynamics with emphasis on the FSM to model
different modes of operations such as piece lifted, piece
placed, generating Al move, and so on.

Design

Starting from an 8x8 square chess board, we first attached a
Neopixel strip to each column (represented in blue). Then,
we attached a magnetic reed switch to the bottom of each

square (represented by the curved lines)

In our design phase, we focus heavily on scalability,
immediate feedback, and modularity. In terms of scalability,
we use neopixel strips instead of LED’s so we can control
the entire row instead of a single square. We also use shift
registers to conserve our digital 1O pins. We decided to use
lexan polycarbonate to make sure the lighting is properly
dispersed to give the user a clear output. In terms of
immediate feedback, we continuously poll the entire board
on command with parallel input pins. Finally, our choice in
using the Arduino Mega gives us a lot more library support
for neopixel strips, tutorials for shift-in registers, more GPIO
pins, and more hardware capabilities (processing power and
memory).

Testing

We verify the system workflow modularly by unit testing each
step. For example, we first made each reed switch is not
defective by using ammeter to detect a closed reed switch.
After that, we checked if each shift register is functional by
writing unit tests that output bitstreams of each rows’
readings. Then, the mapping of the bitstream to the square
on the board is tested with neopixel lighting. Finally, knowing
that individual components all work together flawlessly, we
are able to test our finite state machines. The lighting
conveniently plays a role of a live debugger for each state
transitions.

Modeling our project:

Chess Al:
After perusing various chess libraries, we decided

we needed to build our own chess Al to expose
certain functions needed in intermediate steps of
deciding optimal moves. This allowed our FSM to
react accordingly to as small discrete steps as
possible.

In order to generate hints and Al moves, we use a
minimax game tree representation and give each
chess piece relative value corresponding to its
relative strength in potential exchanges.

omon £) & T Wy

Piece pawn | knight | bishop

Value 1 3 3] 9

rook ' queen

Then we incorporate alpha-beta pruning to improve
the naive minimax.

In order to generate hints, we built a function into
our engine called generateMovesForSquare, which
takes as arguments a square, a color (black or
white), and a game board (represented as a string),
and returns a list of possible moves.

Takeaway and Future Work:

This project put to practice many of the concepts
we have encountered in this course (most notably,
FSM design), and showed us firsthand the difficulty
of building a high confidence system with real-time
and concurrent behaviors. We also gained
experience in writing clean and modular code with
a group of people.

One big takeaway we got from this project was that
hardware decisions that may initially seem minor
can have a large impact on the difficulty of
implementing a hardy finite state machine. One
example of this was the size of the squares on the
chessboard. We sometimes encountered issues in
which one piece was activating two magnetic reed
switches because it was close enough to another
square to do so, thereby confusing our FSM.

In addition, using RFID instead of magnets in order
to detect pieces would provide us with more precise
information, making our FSM implementation easier
and more reliable.

In the future, we still have an interest in building
actuation around our chessboard. We also started

creating a web application that can run the Al
portion of our code. The web application could also
allow a user to play moves even if they are not near

the board.

Align ﬁ
Initial

All pieces present == true

Thanks to everyone in the class who helped us
throughout the project: Professors Edward A. Lee
and Alberto Sangiovanni Vincentelli, GSI’s Antonio
lannopollo, Ben Zhang, and John Finn, and the
classmates around us!

Reset button pressed

Reset Button Pressed
Ready

All pieces present == false

time <3
piecelifted <1 /time =0

Piece(s) placed
time +=1

pieceLifted > 0

legalMove == false

checkmate == true &&
legalMove == true &&
time >3

checkmate == false && legalMove ==true && t>3
Set Prev Board / turn = black

Piece(s) Lifted

Check Prev Board == false

Invalid Move
time =0

pieceLifted > 0 Start Tum

r
Check Prev Board /
_—

Check Prev Board == true

turn == black

Al Make Move

v
checkmate == true
Game Over

Inputs: reading: { 64-bit binary string }

set Prev Board

checkmate == false

Outputs: Neopixel Lighting: { Al Move, Legal Moves, Error Message}

Note: the guards displayed in our FSM above do not explicitly mention the 64-bit binary
string reading. Implicitly, the boolean values associated with these guards (i.e. piecelLifted)
are calculated behind the scenes using the reading at each tick. There was simply no room

in the diagram to show all of this.

Final Pictures

