
DogeFetch • EE149 - Fall 2014

DogeFetch

Jessica Lin, Varun Rau, Wonjun Jeong

EE149 - Fall 2014

12-19-14

I. Introduction

DogeFetch is an automated robot to play fetch
with a dog without human interaction. Utilizing a
Kinect, Raspberry Pi, and spare parts scavenged in
the Embeddeed Systems lab, our team has created
a fully functional dog toy. High level description:
DogeFetch will receive the ball from the dog. After
detection of ball, DogeFetch will lcoate the dog in
it’s 57◦viewing angle. The robot will then use a
freefalling hammer to kick the ball in the direction
opposite of the dog.

II. Electronic Materials

Raspberry Pi
The embedded device used to power the robot and
run the detection algorithm and utilize the statema-
chine. The Pi connects to the Kinect through USB,
and provides GPIO/PWM pins to interface with
the Servos
Kinect
With a viewing angle of 57◦, the camera that the
Kinect provides detects the location and depth of
the dog in it’s field of vision.
Servo - Platform
A rotation servo used to orient the direction the
ball will be launched
Servo - Hammer
A rotation servo used to lift the plastic hammer
clockwise until gravity will cause the hammer to
fall ahead of the servo. The servo then returns to
it’s orignial position, ready to repeat the action.
Microswitch
A switch to be triggered by the ball upon receipt
from the dog.

III. Modules

I. Control - Raspberry Pi(Concurrency)

The core module is the Raspberry Pi, which serves
as the control module to operate all other modules.
The Pi is just as sophisticated as a computer. It
provides USB ports for the Kinect to connect to,
and GPIO pins to deliver PWM signals over to
the servo motors. The current method of running
DogeFetch is to login to the Pi, and run the main.py
(statemachine) program. As soon as the main.py
program is running, DogeFetch is fully capable to
operate on it’s own. The Pi is powered through a
MicroUSB cable that is connected to the outlet at
this point in time. The Pi requires a lot of power to
receive video from the Kinect as well as operate the
servo motors.
For the control module, DogeFetch is written in
Python, at main.py. We will go more into depth of
the statemachine in section IV.

# Code at: https://github.com/wonjun/DogeFetch
# In various modules below
# after initialization:
from threading import Thread

1



DogeFetch • EE149 - Fall 2014

Thread(target=self.run, args=())

Using python, we were able to launch all of the
modules below into different threads using the code
above.. Thus by using concurrency, we were able
to have callbacks within the code for the statema-
chine to change states. Every module was able to
communicate with the main thread, and the main
thread was able to act accordingly. Concurrency
was needed in order to detect when the ball arrived
in the machine, and also to rotate the platform after
the detection of the ball.

II. Vision

The vision (vision.py) module is the component
of DogeFetch that is responsible for detecting the
location of the dog in the Kinect’s viewing angle.
Multiple steps were taken to get vision to work.
There were several things that were taken into
consideration when running our dog detection
algorithm. First, because all computation happens
on the Raspberry Pi, it is imperative to remain
as economical as possible in regards to computa-
tions and memory usage. To that end, making the
images as small as possible is essential. Because
the dog used in this demonstration is a distinct
shade of white, it was sufficient to filter out all
colors outside RBG(255, 255, 255) - RGB(127, 127,
127). Applying this mask and thresholding the
image meant that the Raspberry Pi needs to process
less data, reducing the computational load on it.
On this masked image, we then run a standard
computer vision algorithm, contour detection, to
find all the contours in our image. This works by
generating bounding boxes for all the continous
regions that remain in our masked image. Filtering
out the contours that cannot be dogs–boxes that are
too big or too small–leaves a bounding box for the
location of the dog. The vision module then finds
the center of this most-likely bounding box and
returns left if the center is found on the left side
of the Kinect’s field of vision, otherwise it returns
right. This is then returned to our Robot’s main
run loop via a callback and is interpreted by the
control module based on the current state of the
Robot’s statemachine.

Kinect Driver to work with Raspberry Pi
Luckily enough, there is a driver that can be
found online on Github. (The driver is at

https://github.com/xxorde/librekinect.) When
installed, the Kinect’s video will appear on
/dev/video0 - the traditional location for all video
devices that can be connected to the Pi. Installation
was definitely not trivial. It was tricky, and took a
lot of (uninterrupted) time ( 7 hours). This is due
to the installation process of the driver.

def find_dog_contour(self):
_, im = self.camera.read()
COLOR_MIN = np.array([127, 127, 127],

np.uint8)
COLOR_MAX = np.array([255, 255, 255],

np.uint8)
mask = cv2.inRange(im, COLOR_MIN,

COLOR_MAX)
output = cv2.bitwise_and(im, im,

mask = mask)
ret,thresh = cv2.threshold(mask,0,255,0)
contours, hierarchy =
cv2.findContours(thresh,cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

bounding_rect = None
if len(contours) > 0:

areas = [cv2.contourArea(c)
for c in contours if
cv2.contourArea(c) > MIN_AREA]

if len(areas) > 0:
max_index = np.argmax(areas)
cnt=contours[max_index]

bounding_rect = cv2.boundingRect(cnt)
x,y,w,h = bounding_rect
cv2.rectangle(im,(x,y),(x+w,y+h),

(0,255,0),2)

return bounding_rect

III. Actuation

In order to support hardware input and output
from the Raspberry Pi, we had to use two servos
and a microswitch.
Rotation Servos

while True:
while self.should_spin[0] == 0:

time.sleep(POLL_FREQUENCY)
self.pwm = GPIO.PWM(self.pin, 1000)

2



DogeFetch • EE149 - Fall 2014

self.pwm.start(0)
if self.should_spin[1] == "left":

self.pwm.ChangeDutyCycle(4)
elif self.should_spin[1] == "right":

self.pwm.ChangeDutyCycle(72)
else:

self.pwm.ChangeDutyCycle(1)
while self.should_spin[0] > 0:

time.sleep(POLL_FREQUENCY)
self.should_spin[0] -= 1

self.pwm.stop()

This code fragment from servo.py, is explained be-
low.
In order to use the rotation servos, we had to utilize
several differnt techniques. First, we needed an
external power source other than the Raspberry Pi
to power the Servo. At first, when we hooked up
the servo to the 5V provided by the Pi, the Pi would
lose power for it’s own processor and crash. After
researching online, we decided to purchase a 4AA
battery pack to power all of our actuators. After
the power was hooked up to the servo, we hooked
up the two servos to two different GPIO pins on
the PI. GPIO pins are voltage output pins that serve
to actuate. By using software found on the inter-
net, we were able to manipulate the GPIO pins to
serve PWM signals over to the two different servos.
What was tricky was to get a servo to rotate both
clockwise and counter clockwise– we were able to
do this by stabilzing the frequency at 1000hz, and
changing the duty cycles of the PWM signals. At
low levels, the servo would rotate clockwise, and
at high levels, it would rotate counter clockwise.
Granular changes of the PWM signal would lead to
the speed of rotation being changed. We used the
servos to actuate two different things:
1. Base Rotation
The base rotation is required to orient the hammer
in a certain direction. The servo was deliverd a
1000hz PWM signal with a duty cycle of 5.0 to ro-
tate counter clockwise at a slow rate. This signal
was sent for .5 seconds to the servo. A duty cycle of
72.0 was used to rotate the servo clockwise. Thus,
after detection of the dog, the servo would rotate
accordingly in different directions, and then the
control module would trigger the hammer servo.
2. Hammer Rotation
Since the servos rotate too slowly, we came up with
a method to deliver enough force to a ball so that
the dog could chase it. The hammer is made out

of plastic, and is in free swing mode on an axis.
The servo, then rotates a wooden piece that carries
the hammer in 180degrees, until the hammer then
freely swings downwards to "kick" the ball. The
servo was strong enough to lift the hammer. In
order to rotate the hammer, we delivered a PWM
signal of .5 to the hammer, since if the signal was
too low/servo was rotating slowly, it would not
have enough torque and force to carry the hammer.
Microswitch - Ball Detection We utilzied a mi-
croswitch under the ramp that should have the
ball from the dog recieved, and launched from. We
calculated the weight the ramp would place on the
switch, and allowed it to be sensitive enough for
various different kinds of balls. We also hooked
up this microswitch to a external powersource. We
utilized the same GPIO software that would power
the servos, except changed it to be an input pin.
When the switch was pressed, it would deliver a
high voltage to the pin, allowing the control module
to change states from WAITING to BALL_FOUND.
The code, switch.py, for this was very simple. At
recurring frequencies, the code would poll the pin
to detect voltage inputs.

IV. Statemachine

:$,7,1* %$//B)281'
EDOO�GHWHFWHG

QR�EDOO�GHWHFWHG

GRJ�GHWHFWHG���
OHIW�RU�ULJKW

'2*B)281'

GRJ�GHWHFWHG��
URWDWH�EDVH�DQG�
ODXQFK�EDOO

QR�GRJ�GHWHFWHG

The state machine contained three main states
to govern the modal behavior: WAITING,
BALL_FOUND, and DOG_FOUND. In the state
WAITING, the only action that can move the state
into BALL_FOUND is the activation of the mi-
croswitch. Once the microswitch is activated and
thus a ball is detected, the state machine will re-
quest the vision module to report back the location
of the dog, if there is a dog present. If there is no
dog located by the Kinect, the machine will remain
in the BALL_FOUND state. Once receiving the dog

3



DogeFetch • EE149 - Fall 2014

location if a dog is present, the state machine will
then transition into the DOG_FOUND state. Upon
reaching this state, the base servo activates to rotate
in the direction away from the dog. After the base
servo completes its rotation, the device sleeps for
a few seconds before activating the hammer servo
and launching the ball. After the ball is launched,
the base servo again rotates back to the starting
direction, negating its previous rotation. This pro-
cess brings the state machine back to the WAITING
state, which it remains in until the next microswitch
activation.

V. Simulation

Simulating our statemachine required triggering
sample voltage inputs and outputs on our rasp-
berry Pi. We were able to use software that could
detect whether the pin was Hi or Low. We would
then run our main.py, and by inserting print state-
ments in the code, examine it’s behavior based on
what the pins were doing. We simulated the switch,
ball detection, by putting the respective GPIO Pin
on High, and then observed the statemachine to
change to the BALL_FOUND state from waiting.
Then we gave sample image data to our vision
module, and observed the code until it switched
to DOG_FOUND. Then we observed the two servo
GPIO pins with software to make sure they were
sending the PWM signals, and were high for a pe-
riod of time. And then main.py would return to
WAITING.

VI. Lessons Learned and Next

Steps

I. Lessons Learned

We all learned an immense amount throughout the
course of this project. A main lesson we learned is
to be very specific about the hardware we choose,
and to research thoroughly to make sure that the
hardware is capable doing what we need it to do.
For example, we tried to use a Beaglebone in the
start instead of a Raspberry Pi, but had to use a Pi
instead because interfacing the Kinect with a Bea-
glebone was too difficult. Also, we realized that
the rotation servos that we chose were too slow to
implement our previous model for ball launching

(two rotating disks that would shoot the ball out),
but we only realized this as we were building the
device so we had to create a new method for ball
launching halfway through the project using the
servos that we had.

Another major lesson we learned is that the plan-
ning and design phase is always hard and never
going to be perfect, so it’s better to start working
on the actual hardware early on so that iteration
is possible. We thought through and worked out
the design of the device very early on, however
didn’t start actually building and putting together
all the parts until later. Once we began, we ran into
difficulties such as not having the right resources
to make the device (resources like the Invention lab
or a 3D printer). If we had begun sooner, perhaps
we could have tried to get access to such resources,
or even just bought more pre-made parts using our
budgeted money.

II. Next Steps

There are a lot of possibilities to improve DogeFetch
in the future. First off, we would love to make a
more stable physical housing for the device, since
right now it is mostly made from scrapped pieces
of old projects and a bunch of duct tape. We could
get access to a 3D printer and print the parts for the
device.

Secondly, the device only detects a dog in the
visual range of the Kinect right now, which is less
than 180 degrees. It would be fantastic to be able to
allow 360 range for the dog detection, so that ball
launching can actually be in the complete opposite
direction of the dog (180 degrees from it). We could
implement this by having multiple cameras in all
directions instead of just one Kinect in one.

Lastly, our program is only written to detect
dogs of white color right now. It would great if
the vision module could be rewritten to detect any
kind of dog. To implement this, we would have to
rethink our dog detection implementation to prob-
ably incorporate depth or motion information as
well. Another possibility would be to require the
dog to wear a specific collar that displays an AR
code for the cameras to track, or something like
that.

4



DogeFetch • EE149 - Fall 2014

VII. Conclusion

There were several key considerations that we made
when making this device on both the software and
the hardware side. We knew that for a device like
this that is constantly in communication with ex-
ternal sensors and actuators, we needed to be able
to create a system of abstractions that would allow
us to control the robot’s different hardware compo-
nents independently while also keeping our model
as well abstracted as possible to make reasoning
about the system easier. After considering different
approaches to this problem, we decided to deviate
from the framework that we had used in lab, to
a continous, multithreaded callback method that

allowed us to interface with all of our hardware in
realtime. This became very useful when using the
Kinect, which we found had a very high latency
and low framerate. On the hardware side, we had
to make some tough design decisions to achieve
our goal given actuators that were not as powerful
as we had original hoped. By building our own
hardware, we were able to be very flexible with the
structure of our device, which ultimately led to our
success. Using the Raspberry Pi, we were able to
interface with sensors (the Microsoft Kinect and a
microswitch) and actuators (Rotation Servos) in a
concurrent system while still getting predictable,
correct results and state transitions. In the end, we
built a device that any dog owner will love!

5


	Introduction
	Electronic Materials
	Modules
	Control - Raspberry Pi(Concurrency)
	Vision
	Actuation

	Statemachine
	Simulation
	Lessons Learned and Next Steps
	Lessons Learned
	Next Steps

	Conclusion

