Doorbell Camera
Alex Mead, Kelly Peng, Daniel Rolandi
EECS 149/249A Final Report, Fall 2014

GitHub Repository: https://github.com/darolandi/cs149

Contains the iOS App code, Tornado Server code, Apache Server code, and a copy of mbed code.

mbed Repository: http://developer.mbed.org/users/doorbellcamera/code/DoorbellCamera/

Contains the mbed code.

Youtube video part 1: https://www.youtube.com/watch?v=alLYSg_7Tb7c

Youtube video part 2: https://www.youtube.com/watch?v=xibnRn-P710

Introduction

The Doorbell Camera is our take on
connecting the doorbell to the Internet. It rings like
a regular doorbell, but it also does something extra
depending on whether the homeowner is at home
or not.

If the homeowner is at home, it will display a
message on an LCD screen. If the homeowner is
not at home, it will send an email to the
homeowner's email address.

One possible use case here is knowing that
a package carrier has arrived at your home (when
you are expecting a package and you are away
from home). When the carrier pressed the doorbell,
you will get an email notification (the caveat is you
will not know who pressed the doorbell).

Overview
Button location server _.
L Firebase server i0S App
—‘ mbed i
Speaker — — Tornado Server (email proxy)
[b
Amplifier

camera

L
LL LCD & SD
Figure 1: Overall System Map. Note: state

machines for each component’s operation can be
seen in Append A.

The longest pipeline in our system is
detecting whether the homeowner is at home.
Using an iPhone app, the homeowner's location
data is sent to a Firebase server, which is queried
by the location server, which calculates whether the
user is at home. The mbed can fetch the
information from this location server.

The mbed simply sits waiting for a button
press. A separate thread continuously polls the
server every few seconds. On a button press, the
mbed will check the ‘home’ variable and perform
the behavior mentioned before.

If the homeowner is at home, the mbed tells
the LCD screen to display a message. If the
homeowner is not at home, the mbed contacts a
proxy server and requests it send an email.

Component 1: mbed

Interface: CC3000
D Protocol: CC3000_hostdriver_mbedsocket Library (SPI)

Interface: Button

Protocol: GPIO pin Interrupt (interrupt) [
Interface: JPEG RS-232 Camera 2M

D Protocol: Serial library, customized code (TTL Serial)

Interface: Speaker/Amplifier D
Protocol; GPIO pin Interrupt (interrupt) Interface: 2.8" TFT LCD Screen with microSD socket
Protocol: SPI_TFT_ILI9341 Library (SPI) - LCD screen

SDFileSystem Library (SPI) - microSD socket

Figure 2: mbed

The mbed runs 2 threads: one called the
"main thread" and the other called the "wifi thread."

1.1 Wifi and Concurrency

The wifi thread's job is to connect the wifi to
the Internet (and reconnect if needed). It contacts
the location server that has the "is homeowner at
home?" data.

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fdarolandi%2Fcs149&sa=D&sntz=1&usg=AFQjCNH72EwjD3DYbmc6SdsRLcq9YHKVrw
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.mbed.org%2Fusers%2Fdoorbellcamera%2Fcode%2FDoorbellCamera%2F&sa=D&sntz=1&usg=AFQjCNEbGu4e1xRATLSq3dZwmjwmy9egGw
https://www.youtube.com/watch?v=aLYSg_7Tb7c
https://www.youtube.com/watch?v=xibnRn-P710

After parsing the HTTP Get Request HTML,
the wifi thread then writes the data to a shared
variable (called "is _at home") that is read by the
main thread if a button press is detected. It will
always try to reconnect to wifi whenever service is
interrupted for reliable system behavior.

We chose to do this concurrently so that the
main thread needs to deal with only the state
transition and making writes to the LCD screen and
to a Websocket to talk with the Tornado email
server.

This was essential because the button press
triggers an ISR, and it is a bad idea because a
scenario might happen where the ISR returns to a
line right before sending a HTTP Get Request,
causing the LCD screen or Websocket writes to be
delayed until later. Separating state transition and
WiFi connection/reconnection allows to minimize
response time.

1.2 Button ISR

The main thread is the one that initializes
variables and waits (by thrashing) until the button
ISR gets called. The button ISR turns on the
speaker and checks the "is _at home" and issues
a state transition for the main thread. The state
transition is where the main thread issues a write
on the LCD screen or on the WebSocket.

1.3 LCD Screen

The LCD screen was originally planned for
showing the guest's photo when the guest presses
the doorbell. The homeowner is at home, so the
homeowner can check the guest's face (from
indoors). There is an issue with showing a picture
(to be discussed later in the "Challenges and
Issues" section) so we ended up showing a
predefined text instead. Using the SPI_TFT_ILI9341
library, mbed writes to the screen using SPI.

1.4 Sending Email

The WebSocket serves as a connection to
the Tornado server, our email proxy server. The
mbed writes a predefined key that will trigger the
proxy server (which acts as an SMTP client) to
send email. The proxy server handles the email
sending.

The original, naive idea was that mbed has
a library that can send an email. Unfortunately,
mbed's SMTPClient library does not support the
level of encryption required (TLS/SSL) by SMTP
servers. We ended up using a proxy server. More

on this in the "Issues" section.

The second button press turns off the
speaker and clears the LCD screen. The speaker
rings using an ISR, creating a 440 Hz square wave
just like what we did in one of the labs, but due to
use needs, an amplifier is used to increase the
speaker volume.

Component 2: Location Server

Interface: Personal computer terminal
D Protocol: SSH

Interface: mbed [
Procotol: HTTP Get Request

Interface: Firebase server
Protocol: Firebase Python API

Figure 3: Apache Server

We have an Apache server with a Python
script that runs continually, querying the Firebase
Database for the homeowner's most recent location
and calculating home and not home.

Using Python was a convenient choice
since Firebase has a Python API for it, and since
really many things are easier and more concise to
write in Python than in C++.

The Python script stores a predefined
"home" constant that determines whether the
homeowner is at home. The location data (a
latitude-longitude pair) is compared with the
constant (this is done through a simple equation
from geography); if the distance is smaller than a
certain threshold the homeowner is considered "at
home." Otherwise, the homeowner is "not at
home." The Python script then writes 1 or 0
(respectively) to a text file called "home.txt" so the
mbed can easily read it using a HTTP Get Request.

Component 3: Tornado Server (email proxy)

Interface: Personal Computer Terminal
Protocol: SSH

Interface: mbed
Protocol: Websocket

Dlnterface: Email
Protocol: smTp

Figure 4: Tornado Server

We also have a Tornado Server written in
Python that can accept communication using
WebSocket. This server acts as a proxy to send an
email on mbed's behalf.

Conveniently, Python has library support
so that it can act as an SMTP client. The SMTP
server we are using is Gmail's SMTP server
(owned by Google). The content of the email and
the from/to/subject headers are predefined in the
Python script. We use TLS to encrypt the email, as
required by Gmail's SMTP server.

The script simply waits around, waiting for a
WebSocket connection and reads its message. The
predefined key is "email" and so if the message is
exactly that, we execute all the code to send the
email.

In the GitHub repository you will find an
index.html file that serves as our debugging spot.

Component 4: Firebase Database

Interface: iOS Application

Interface: Apache Detector Server
[Protocol: Firebase iOS API

Protocol: Firebase Python API

Figure 5: Firebase Database

Firebase is a database service that acts as
a meeting point between the Apache server and
the location-tracking iOS App. It has great API
support to interface with Python (used by the
Apache server) and iOS (used for the
location-tracking app).

The database stores only the most recent
latitude-longitude pair that represents the
homeowner's location, since we never need the
homeowner's trace or history of locations.

Component 5: iOS App

Interface: Firebase Server
Protocol: Firebase iOS API

Figure 6:i0S App

Written in the recently-released Swift, this
app reads GPS data (latitude-longitude pair) and
uses the Firebase API to upload that to the
Firebase data. Sending that data to Firebase
requires a specific key, and that same key is known
by the Apache Server so the Apache Server knows
what to look for.

One thing that we failed to elaborate in the
demo video or in the presentation was why used an
emulator instead of a real iPhone. The reason is by
using the emulator, we do not need to run across
campus to test its home/not-at-home functionality.
The emulator can emulate different locations in the
world, so we can expedite the testing process.

One caveat needs to be addressed here.
We model the homeowner being at home as simply
his/her distance to a predefined point (even then, it
is just his/her phone, which might be misplaced).
This is a coarse-grained solution to locality, but
might work well for our case since if a person is
close enough to home (the threshold is fine-tuned
to a few meters) then the person might as well be
considered "at home." That is sufficient. The only
problem here is probably the GPS's internal
accuracy and error margins, which itself might be a
few meters in magnitude. That is the level of fidelity
that our model provides.

Component 6: Camera

Although not featured in the final system,
we did get the camera working. The camera
communicates with mbed using a buffered TTL
Serial connection. The camera has a buffer within
itself, so to give commands to it the mbed has to
write bytes into that buffer. (Much alike how we
send byte commands to WiiMote and iRobot in our
labs.) Once captured, the image data is stored in
the camera's buffer and mbed can fetch it
incrementally. The image is encoded as JPEG.

Challenges and Issues

a. Sending Email

Originally we wanted mbed to be the
SMTPClient (without a proxy server) but it is not
compatible with the SMTP servers out there.

Antonio introduced us to Temboo, a cloud
service that can serve as a proxy for us, but it
accepts HTTP Post requests with "Content-Type:
application/json" and our HTTPClient supports only
"Content-Type: x-www-form-urlencoded", which is
a completely different thing. Five HTTPClient
libraries were investigated in total and none of
them satisfied our needs.

So we turn to creating a proxy service
ourselves, using Tornado. To connect, we use
Websocket instead of HTTP Post.

SMS was originally discussed, but never
investigated due to time constraints.

b. Displaying Picture on the LCD Screen

Originally we planned to snap a picture of
the guest using the camera and display it on the
screen.

The screen requires a 24-bit BMP image on
its microSD card to display. If we wanted to show a
preset image instead, we know how to do that and
we can. Unfortunately, the picture we snap using
the camera is of JPEG format and we would
require a conversion.

We tried several libraries for conversion (the
algorithm is too hard to implement ourselves, said
the GSI) but none worked (or even compiled). The
last one we tried, which was promising judging from
the discussion threads, required us to put the
JPEG image inside the microSD card and do the
conversion using this external memory. We tried
several filesystem libraries (SDFileSystem and
SDHDFileSystem) and even with several different
microSD cards, but they always fail to recognize
the microSD cards. So we scrapped the picture
idea and display text instead.

Final Remarks

This project helped us reinforce the ideas of
several topics from class.

Reliable real-time behavior - We did our
best to keep the system as reliable as possible. We
ensured there's no possibility of deadlock, and the
wifi always tries to reconnects if there is a
connection failure.

Concurrency - We had to work with two

threads in mbed to achieve a purpose that is
naturally parallel. We did not employ mutexes
because (1) only one thread is writing, so no
possibility of overwriting exists, (2) the only one
reading is an ISR, which is not allowed to have
mutexes, and (3) in reality, the race condition
should matter only when the homeowner is
transitioning between home to not-at-home or vice
versa, which means he/she is close enough to the
doorbell anyway; recall the speaker always rings
for these types of situations.

Design methodologies for embedded
systems design - Each of our subsystems have
their ways of unit testing. For example, the
"index.html" in the Tornado server allows for
testing sending the email. Then we have various
test functions in the mbed's "main. cpp" for
different components.

Figure 7: Final System

Credits:

mbed Official Library

Project Demo; by Antonio lannopollo
CC3000 (wifi driver); by Martin Koijtal
HTTPClient; original by Donatien Garnier, latest
fork by David Smart

Firebase (iOS-side); by Firebase.com
SPI_TFT_ILI9341; by Peter Drescher
Tornado (Python-side); by tornadoweb.org
Websocket (Python-side); by python.org
WebSocket; by Samuel Mokrani

Serial Interrupt Cookbook; by mbed
Camera: Link Sprite (Arduino)

*Big thank you to Antonio lannopollo for advice and
much patience

Appendix A: State Machines for System Component Functionality

For the exact protocol of communication between system components, see each component’s
corresponding section and figure in the main text.

Component 1: mbed

mbed:

Variable: Home - Boolean

WIiFi Thread:

In: Location Server query (HTTP Get Request)
Out:

disconneted/

(connected & ((s(t) % 5) ==0)) /
query location server;
update "Home" variable;

/ trying to connect

connected/

Main Thread:

In: GPIO Pin (Button)

Qut: GPIO Pin (Amplifer -> Speaker)
WebSocket (email)
TFT screen connection

deactivate button /

Button GPIO & (Home == False) /
deactivate speaker

s(t)=0;

(s(t) == 30}/
deactivate speaker

/ activate speaker;

display text on screen; Button GPIO & (Home == True) /

/ activate speaker;
send email;

The two state machines which model the funcitonality of the mbed configured in an asynchronous fashion whose
semantics consist of both machine executing independantly. The one shared variable between them is '"Home'a
boolean variable. In cases of race condition, Main Thread will get read access over WiFi Thread's write access. Due
to the physical nature of this problem, race conditions which actually change the value of Home simply mean that a
user is near the threshold defined to be home or not home. Thus, they will most likely see if someone is at the door
or hear the bell. Meaning, this race condition is of lesser importance that it would be in other shared variable

Component 2: Location Server

Location Server:

In: Firebase Python API
Out: /home.txt HTML

((s(t) % 5) == 0) / query Firebase Server;
calculate Home Status;
update HTML;

Component 3: Tornado Server (email proxy)

Tornado Server (email proxy):

In: Websocket from mbed
Out: email to SMTP server

(Websocket == True) / send email to SMTP server

Component 4: Firebase Database

Firebase Server:

In: iOS App push, location server pull
Out: location server (lat,lon)

location server/ iOS push/ update latest (lat,lon)
send (lat,lon)

Component 5: i0OS Application

iOS Application:
In: GPS Chip (lat,lon)
Out: Firebase APl push

(s(t) % 5) == 0) / quary GPS chip;
update location (lat,lon);
push (lat,lon) to firebase;

