
Isochronous Control of Sensor Networks: Final
Report

Aishwarya Parasuram, Jack Kolb, Nikhil Goyal
UC Berkeley

I. INTRODUCTION

Our project aims to create a network of sMAP sensor
nodes and actuators. The actuators are controlled isochronously
using a time synchronization protocol. Our work incorporated
several key concepts from the course, including modeling
with FSMs, time-triggered systems, time synchronization, and
modular design.

A. Overview of sMAP

sMAP is a specification for a protocol which exposes and
publishes time-series data from a variety of sensors. The main
components of sMAP include sources (a restful web service
that accepts requests and publishes sensor data), archivers
(persistent storage of sensor data in the form of a time-series),
and applications (perform visualization and analysis of sensor
data to create actuation signals).

B. Definition of Isochrony

Our project centers on achieving isochronous control over a
collection of sensors and actuators. In an isochronous system,
all components react simultaneously, and a fixed period of time
elapses between reactions. Thus, isochronous control can be
viewed as a stricter form of synchronous control. We focused
on isochrony because it serves as a foundation for more
sophisticated time-based control schemes; most of the work
that would go in to implementing such schemes is also required
to achieve isochronous control. Moreover, isochronous control
has several important benefits, such as keeping control loops
stable and ensuring that new sensor data is acted upon in a
timely manner.

C. Goals

1) Modularizing sMAP architecture by isolating sMAP
sources and moving them to embedded drivers

2) Finding minimal embedded device for sMAP Source
3) Isochronous Actuation
4) Introducing the concept of a global notion of time

among all nodes by using a time synchronization
protocol

II. SYSTEM DESIGN AND MODELLING

A. Overall Design

Our system consists of temperature sensors interacting with
sMAP sources. The sMAP source runs on an Arduino Mega

and accepts requests from a web service wanting to subscribe
to the sensor’s data. The source sends data as HTTP/JSON
to the zone-controller, which is a centralized controller that
keeps track of the sensors and actuators and acts as the
local NTP server. The zone controller computes intelligent
actuation signals based on the combination of data from all
the sensors. These actuation signals are sent out as soon as
they are computed, however the actuation itself takes place
at the actuators isochronously. The signals are buffered at the
actuator until it is time to take the actuation. A global notion
of time is maintained throughout the network by the zone-
controller. Time signals are sent by the zone-controller as a
JSON object in an HTTP PUT Request (to the actuators) or
HTTP Response (to the sources) and these are updated locally
at the sources and the actuators. Figure 1 depicts the exchange
of messages between the various components in the network.
The Global Data Plane (GDP) acts as a replacement for the
sMAP archiver in this architecture. We built an HTTP-GDP
interface that accepts HTTP/JSON from the zone-controller,
converts them into a GDP friendly format and sends it to a
distributed log. Chimera, an open-source routing library, is
responsible for location independent routing. The complete
design of our system is given in Figure 2.

Fig. 1. Typical Sequence of Network Messages



Fig. 2. System Architecture

B. Zone Controller

The zone controller ties the network’s sensors and actuators
together. It accepts data from sensors in the form of HTTP
requests with a JSON payload. The zone controller then
analyzes this data to compute intelligent actuation signals.
Finally, the zone controller sends actuation signals to the
network’s actuators in the form of HTTP requests, also with
a JSON payload. It also functions as the server for time
synchronization. The controller sends its local time to the
sensors and actuators piggy-backed on HTTP PUT requests
and HTTP responses, so that the time can be updated on the
embedded drivers.

III. SYSTEM IMPLEMENTATION

A. Choosing an Embedded Driver

The original implementation of sMAP is through Python
and a set of Python dependencies on FitPC. Isolating sources
enables ease of installation and flexibility. Deploying sources
on embedded drivers achieves energy efficiency and reduces
cost. Raspberry Pi (RPi) seemed to provide a good starting
point, as it runs Linux and supports Python. sMAP was
installed on RPi along with its dependencies, and we created
an sMAP driver to run a motion detector. The sMAP source
functioned as an independent unit, and relayed time-series data
to sMAP archivers. However, CPU usage analysis indicated
that RPi was a wasteful use of resources for a dedicated sMAP
source, pushing us towards a lower-level implementation of
sMAP. Since most embedded devices speak C, the ideal
approach is to create a C implementation of the sMAP source,
and deploy this on an embedded platform such as Arduino
Uno, which can natively interact with a sensor. Since a sMAP
source needs to act as a HTPP client and source at the
same time, Arduinos lack of support for multiple threads was
unhelpful. We attempted to use timer interrupts to implement
a multi-threaded model but due to the limitations of embedded
platforms and complexity of the code, this implementation was

unstable. Round-robin scheduling of client and server activities
served as a work-around.

As the complexity of sMAP source functions increased,
the Uno was unable to process the code in real time due to
its limitations in memory and computational power. When the
same code was ported to the Arduino Mega, which has higher
capacity in terms of processing power and program memory,
the system showed ideal behavior. Hence we are currently
using the Mega as an sMAP source.

0" 5" 10" 15" 20" 25"

Room Sensor 

Environt Sensor 

Zone controller 

Signal sent to HVAC 

Signal sent to Economiser 

HVAC 

Economiser 

Time (sec) 

Fig. 3. Timeline of Events

B. Use Case Description

We designed our network of sensors and actuators based
on a motivating use case: controlling the temperature of a
hypothetical room while also minimizing energy consumption.
The system features two sensors to measure room and outdoor
temperatures. The system also features two actuators. The first
is an HVAC system that can supply artificially heated or cooled
air to the room. The second actuator is an economizer, which
allows air to enter the room from outside. This allows energy
to be conserved by avoiding use of the HVAC system when
unnecessary while maintaining a constant airflow.



Fig. 4. Finite State Model

The zone controller analyzes sensor data in order to main-
tain a comfortable temperature in the room while minimizing
energy consumption. It accomplishes this by controlling the
HVAC and economizer actuators together. For example, if the
outside air is within a comfortable range, then the economizer
is fully opened to allow external air to enter the room, and the
HVAC is deactivated. Figure 3 shows the sequence of events
that occur during each cycle of system operation.

In order to simulate this use case, we constructed a net-
work of Arduino boards connected via Ethernet. Two of the
Arduinos represent the sensors. Another two Arduino boards
are hooked up to multiple LEDs to visually indicate which
actuation signal was received. For example, one of the boards
represents that HVAC actuator and illuminates different LEDs
depending on whether it received signals to heat, cool, or turn
off. Finally, we integrated the sensors and actuators together
using the zone controller described earlier, which was deployed
on a laptop PC. Our system can be modeled as a composition
of finite state machines, as seen in Figure 4.

C. Components

The important hardware components used in our system
are shown in Figure 5. We used TMP36GT9 as a temperature
sensor. This is interfaced with the Arduino Mega that functions
as the sMAP source. The Mega collects sensor data and uses
an ethernet shield to wrap data in an HTTP PUT request
as a JSON packet. This is sent over a local network to the
zone controller, which is implemented as a Python program
on a laptop. The actuator logic is again implemented on
Arduino Mega. The actuators are boards soldered with LEDs to
represent the various states of the economizer and the HVAC
system. All sensors and actuators are affixed with real time
clocks (DS1307) as the Arduino does not have a notion of
wall time, although it does have an internal timer that can be
programmed. The nodes also include LCD displays (LCM1602

IIC V1) that are used to display the time and sensor readings
for debugging purposes.

D. Testing

1) Component Test: Since our project involves a number of
embedded components purchased from third party vendors, we
performed component tests on each of them individually before
building the system as a whole, to simplify the debugging
process. This helped us find a faulty Real Time Clock with a
burnt IC, which would have otherwise given us erroneous time
readings.

2) Unit Test: Each unit of our system such as the sMAP
source, zone controller, actuator and the HTTP-GDP Interface
was individually tested with synthetic inputs and outputs
before integration. This helped us modify signal formats before
building it into the larger architecture.

3) System Test: Since our project consists of a number
of heterogeneous modules and additionally combines two
larger projects, the sMAP and GDP, we performed intensive
integration tests to ensure smooth functioning of the system as
a whole. These tests involved receiving acknowledgements for
messages sent over the network, load testing for the server,
testing time synchronization across nodes through a native
display and load testing.

4) Integration Test with Synthetic benchmarks: Since we
were particularly concerned with the integration of sMAP and
GDP, we created artificial sensors that generated synthetic data,
embedded this data as JSON within a HTTP packet and sent
it to the interface. The test involved querying sensor data from
remote servers. Successful results from queries indicated that
the data passed through all stages of processing.



IV. CHALLENGES AND LIMITATIONS

A. Lack of Support for Multithreading in Arduino

One of the limitations of our design is that both the
actuators may miss some of the signals sent to them by the
zone controller. This is because each actuator performs two
tasks:

1) Listening on the network port for actuating signals
from the zone controller

2) Obtaining the signal from the port and processing it.

In an ideal case, these two tasks should be performed using
two separate software threads, where one of the threads would
be dedicated to listening the network port and storing the
incoming signals in a temporary buffer. However, Arduino
Mega does not provide any support for multithreading. Thus
we were forced to perform these two tasks sequentially and
listened for signals through periodic polling. While performing
the signal processing tasks, if the controller overwrites the pre-
vious unprocessed actuating signal with another, the actuators
will miss the first signal sent by the controller.

Fig. 5. Hardware Components (Clockwise from top left) - sMAP Source
and Actuator on Arduino Mega, TMP36GT9 Temperature Sensor, Real-time
Clock DS1307, YwRobot Arduino LCM1602 IIC VI, Actuators Implemented
as LEDs and Netgear Ethernet Switch

B. Problems with Ethernet shields

For the two sensors, we were using two different types of
Ethernet shields, which used separate built-in libraries. As a
result the kind of code implemented to use these libraries had
to be significantly different.

C. Network Configuration

Our system required us to build our own local network
without connecting to the Internet. Hence, we had to manually
allocate an IP address and a MAC address to each compo-
nent in the network to establish communication between the
sensors, actuators and the zone controller. We also had to
devise our own time synchronization protocol, as we couldn’t
establish a connection with global NTP servers.

D. Time Precision

The real-time clocks we used were limited to a precision
of one second. Thus, the clocks on each Arduino board could
only be synchronized with a granularity of one second, which
resulted in cases where the two actuators were slightly out
of sync. As a future step, we could use the RTCs and the
internal Arduino clocks in combination to achieve millisecond
precision.

V. CONCLUSION

Our project produced a successful prototype network of
sensors and actuators featuring intelligent and isochronous
actuation based on sensor data. The network components
interacted via an HTTP/JSON interface with a central zone
controller, and a time synchronization protocol was used to
establish and maintain a global notion of time. There are
several potential next steps we could take, including better
integration with the GDP and developing more intricate time-
based control schemes.

REFERENCES

[1] “Arduino,” http://arduino.cc/en/Reference/Ethernet.
[2] “Bottle Library,” http://bottlepy.org/docs/dev/index.html.
[3] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler, “smap:

a simple measurement and actuation profile for physical information,” in
Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems. ACM, 2010, pp. 197–210.

[4] “The Global Data Plane,” https://swarmlab.eecs.berkeley.edu/projects/.
[5] “NTP & PTP,” http://www.en4tel.com/pdfs/

NTPandPTP-A-Brief-Comparison.pdf.
[6] “Chimera,” http://current.cs.ucsb.edu/projects/chimera/.
[7] “Seeed Studio Ethernet Library,” http://www.seeedstudio.com/wiki/File:

W5200 Ethernet Shield Library.zip.


