
Keep in Touch

Niranjan Kumar, Amy Liao, Siddarth Sen, Eric Tu EECS 149/249A

Project Vision
In many parts of the world, touch typing has

become such a ubiquitous skill that children learn it

in their first few years of schooling. Although

numerous interactive learning systems for touch

typing exist, currently no software exists to provide

feedback on whether the correct finger is used to

press each key or the force with which the key was

pressed. Incorrect finger usage and typing force not

only reduces typing efficiency, but could also lead to

ergonomic injuries later, such as repetitive motion

injury and carpal tunnel syndrome. To address this

problem, we have developed a smart glove capable of

correlating the finger used to each keystroke, thus

enabling the learning software to track finger usage

and pressure while typing.

Objectives

 Design and optimize a smart glove with

pressure sensors located at the fingertips

 Develop an interactive learning software for

touch typing that integrates pressure sensor

feedback with visual feedback for the user

 Integrate software and hardware components

Design Criteria
 In designing the Smart Glove, we

considered several key design criteria that needs to be

met. First, our system must be able to detect all

keystrokes and the associated finger pressures

generated by the user. We set the design goal such

that our system should be able to accurately detect

key presses at 212 words/minute or 17.8

keystrokes/second, a rate achieved by the world

record holder. In reality, most users of a touch type

learning program will type under the average speed

of 40 words/minute or 3.3 keystrokes/sec [1]. In

addition, since different keyboards vary in the force

required to register a key press, our force sensors

must be able to detect forces in the range of 0.25N to

0.85N for our Smart Glove to be compatible with all

keyboards [2]. Finally, the system should be highly

accurate and achieve at leave 90% sensitivity and

specificity.

Systems Overview
The Smart-Glove system consists of an

instrumented glove containing force sensors, a

Freescale mbed microcontroller[2] to conduct basic

thresholding processes, and a software-based typing

framework that compares keystroke data with force

data and displays user feedback on a GUI. When the

user presses a key, two inputs are generated and

passed to the system. First, the key listener on the PC

registers a “key pressed” event. Simultaneously, the

resistance of the force sensors on the finger used will

drop below a threshold value. An mbed

microcontroller collects and conducts basic

thresholding of the data from the force sensor. The

typing framework receives data from the mbed

software over serial connection using the RXTX

Library[4]. In addition, the framework is notified of

“key press” events by the key listener. The Typing

Framework integrates this data and uses it to provide

feedback via the GUI so that the user can correct the

fingering or pressure used.

Figure 1. Schematic of hardware setup

Figure 2. Software architecture

Instrumented Smart-Glove
In order to map key strokes to the fingers

being used, a force sensor is attached to each finger

of the Smart Glove. The FSR400 small round force

sensing resistor from Interlink Electronics was used

to measure the finger pressure. The FSR400 is a

flexible force sensor with a 7.62 mm diameter force

sensitive area that fits easily on the tips of the fingers

without hindering finger movements.

These small force sensors contain a

piezoresistive component. In the non-actuated state,

the force sensors have a resistance of 10 MΩ. When

actuated, the resistance of the force sensors (2.5 kΩ

to 1 MΩ) varies linearly with respect to the amount

of force in the range between 0.1-10N, where a lower

resistance value corresponds to a higher force.

Equation 1 shows the relationship between force and

resistance, fitted to an affine model. The active range

of these force sensors is able to detect the range of

forces necessary to actuate all types of keyboards as

specified in the design criteria.

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = −100758𝐹𝑜𝑟𝑐𝑒 + 1010076
Equation 1. Affine relationship between force and

resistance

Figure 3. Force sensor

A voltage divider is used to measure the

resistance of the force sensor (figure 3). The voltage

divider is powered using the MBed’s 3.3V output. A

1 kΩ resistor (R1) is used on each branch of the

voltage divider to ensure that the current never

exceeds 3.3 mA and that the 3.3V power is never

shorted to ground.

Figure 4. Voltage divider circuit

The resistance of the force sensors is

calculated using equation 2.

𝑅𝑖 = 1000 (
1 − 𝑣𝑖
𝑣𝑖

)

Equation 2. Resistance of force sensor

where vi is the voltage measured by the voltage

divider.

Freescale mbed Board
A Freescale FRDM-KL25Z, an mbed

Kinetis board [2] with an ARM Cortex M0+

processor [3] is collects and conducts basic

thresholding of the data from the force sensor.

Since the mbed board only has 6 analog

channels, two mbed boards must be used to acquire

data from both hands. For each Mbed board, channels

PTB0, PTB1, PTB2, PTB3, and PTC2 were used

corresponding to the pinky, ring finger, third finger,

pointer finger, and thumb respectively.

Figure 5. Mbed LK25Z Freescale Mbed signal

Based on calibration data from an

experienced typist, we have set the threshold at 100

kΩ for a finger press detected and 10 kΩ for finger

pressed too hard. The thresholds were determined by

having the user type a calibration sentence “The

quick brown fox jumps over the lazy dog.” while

recording the forces necessary actuate each key press

10 times. The threshold for finger presses was chosen

to maximize detection of true presses, while

minimizing false positives due to the overlap between

the observed resistance ranges for finger presses and

resting finger positions.

Typing Framework
The Typing Framework is in charge of the

PC side of the Keep In Touch system, and is

implemented in TypingFramework.java. As

mentioned in the Systems Overview section, the

KeyListener send “key press” data to the Typing

Framework every time the user presses a key on the

keyboard and each of the two mbed boards, one for

each hand, send finger data to the PC 40 times per

second via the serial port, which is read by the

Typing Framework using the Java RXTX serial

communication library [4]. The Typing Framework is

responsible for processing these three data streams

and turning them into meaningful feedback for the

user. To do this, it first efficiently interleaves the two

high-throughput finger data streams from the two

mbeds to produce one stream with the data points in

chronological order. It then compares the resulting

finger data stream with the key press stream gathered

from the KeyListener and performs inference to

determine which finger was most likely used to press

each key in the key press stream. It also records if a

finger was pressed too hard. In addition, the Typing

Framework also reads from the lesson file and uses it

to assess correctness of the keys typed. Thus, for each

character in the lesson, it will figure out if the user

typed it correctly, typed the wrong key, typed with

the wrong finger, typed too hard, or made some

combination of these three errors. Finally, it

computes some basic statistics such as accuracy and

words per minute. It sends the typing feedback and

statistics to the GUI which displays it to the user.

Timing and Synchronization

Accurate timing and synchronization is

crucial to correlating finger press data with key press

events. Our typing program must be able to detect at

least 1060 keystrokes/min or 17.7 keystrokes/sec,

which is the typing speed of the current world record

holder. This is far faster than a beginning typist

learning to type using our program. However, to be

safe, we have decided to use the world record

holder’s typing speed as the design criteria. To detect

18 keystrokes/sec, based on the Nyquist theorem, the

force sensors must be sampled at twice the frequency,

or 36 keystrokes/sec. Since our Mbed code is capable

of sampling all finger pressure data at a rate of 25

samples/sec, no data will be lost due to

undersampling.

To establish synchronization, we used the

Ticker object [5] from the mbed.h library. The Ticker

object generates timed interrupts at a user-specified

rate. It can be tied to interrupt service routines via its

attach() method. The Typing Framework on the PC

will send a signal to each of the two mbed boards to

start the Ticker, while recording the PC timestamp at

that instant. Once the Ticker has been started, each

mbed will continuously measure the resistances of

the force sensors and compare it with the thresholds

for finger pressed and force overload at a sampling

rate of 25 samples/sec. Based on whether the

thresholds for any of the fingers were achieved, a

finger ID is generated and stored in the mbed serial

port buffer The data is stored in a 4 byte packet, with

the first byte representing the finger ID and the last 3

bytes encoding the timestamp.

On the PC side, the Typing Framework

collects data from both mbeds and interleaves them

to create a stream of data points corresponding to

finger presses from both hands that is in

chronological order. The Typing Framework must

transfer data from the RXTX serial port input stream

[4] buffer to PC memory every two seconds. This is

because the input stream is just an abstraction hiding

the serial port buffer handled by the serial port

hardware. At the rate data arrives from the two mbed

boards, this buffer will overflow shortly after two

seconds of neglect.

Inference Problem:

 To eliminate nonsensical force sensor data

(eg. from random finger taps) or to break ties, we can

calculate the probability that a finger was used given

a keypress to determine which finger was most likely

used. To do so, we make a few key assumptions:

 The timestamp of the finger press and the

timestamp of the keypress are very close

 For any given finger, it is unlikely that a key

far from that finger was pressed

Based on these assumptions, we can solve for the

Maximum a Posteriori estimate of X given Y to find

the X which maximizes P(Y|X) using the equations

listed in equation 3. Let X = finger used + timestamp

recorded on MBED and Y = key pressed + timestamp

recorded on PC.

Equation 3. Inference problem

This set of equations further assumes an uniform

distribution of X (that the user is equally likely to

have selected any key). To further improve the

accuracy of this model, we can add a non-uniform

prior to better predict finger usage.

GUI:

The GUI was programmed using the Java

swing and AWT code libraries, which contain classes

for making graphical components, such as buttons,

labels, and frames. The user interface layout prompts

the user to type certain phrases and displays relevant

statistics, such as words per minute, percentage

correct, and feedback on finger usage. The user will

attempt to type the prompted sentence using the

correct finger. 10 colored boxes located below the

prompt sentence inform the user about which fingers

to use to press the next key. As the user types, a

cursor located below the prompt sentence indicates

where in the sentence progression the user is at and

the box corresponding to the finger to use turns

yellow. After typing the full sentence, the GUI will

show what the user has typed with each letter color-

coded to provide feedback on whether the correct

finger and key were pressed.

Figure 5. GUI layout

Future Directions:

 In order to improve the Smart glove design,

we would look into other force sensors. The FSR 400

force sensors were too small to accurately detect

finger presses in all hand orientations. Finger pads

versus fingertips are used to actuate keys in the

extended and curled positions respectively. In order

to be useful, the Smart glove must be able to detect

both of these cases. However, due to the small size of

the sensors, only forces at the finger tips were

detected reliably, causing a few extended finger

presses to be missed. In addition, flexing the fingers

without pressing key occasionally places a small

degree of pressure on the force sensors, which can

trigger a key press reading. A larger, more flexible

sensor is needed to capture all finger press readings.

In addition, an improved mounting procedure would

help reduce the number of false positives.

To further improve the sensitivity and

accuracy of the system, we can incorporate a non-

uniform prior assumption to the inference problem to

improve our finger usage predictions. We can also

add in a calibration mode in the GUI that the user

must complete at the beginning of each session to

calibrate for the user’s natural typing and resting

force of each finger as well as variation in keyboard

actuation forces. This data will be used to further

optimize the thresholding and smoothing functions to

improve the accuracy of the device and reduce the

number of false positives.

 In addition, to improve user experience, we

can also display additional statistics in the GUI to

give the user more feedback on how much pressure is

used on average for each letter or finger. Finally, we

can also implement an additional mode to track user

history throughout the learning course.

Conclusion:
 In conclusion, our team has built and

demonstrated a Smart Glove prototype designed to

provide touch type learners with more information

about finger usage and finger pressure. Small

FSR400 force sensors placed at the tips of each finger

sense when the finger has been used to press a key.

Two Mbed boards collect and process the data before

sending it via serial connection to a Java-based

Typing Framework on the PC, which then compares

finger pressure data with Keystroke data to determine

finger usage. Finally, feedback is displayed to the

learner on an intuitive graphical user interface. In

addition to the speed and accuracy emphasized by

existing typing learning programs, our device will

help new typists develop good ergonomic habits,

which will improve their health and well-being in the

long run.

References

1. Average Typing Speed Infographic.
http://www.ratatype.com/learn/average-typing-
speed/

2. Gerard, M.J., Armstrong, T.J., Franzblau, A., Martin,
B.J., Rempel, D.M., 1999. The effects of keyboard
stiffness on typing force, finger electromyography,
and subjective discomfort. Am. Ind. Hyg. Assoc. J.
60, 762–769.

2. Freescale FRDM-KL25Z mbed
http://developer.mbed.org/platforms/KL25Z/

3. ARM Cortex M0+
http://www.arm.com/products/processors/cortex
-m/cortex-m0plus.php

4. Jarvi, Trent, et al. "RXTX: A Java Cross-Platform
Wrapper Library for the Serial Port" 1997-2014
The GNU Project. https://github.com/rxtx
Available under the GNU Lesser General Public
License (LGPL)
http://www.gnu.org/licenses/lgpl.txt

5. “Ticker Interface.” ARM mbed Handbook.
https://developer.mbed.org/handbook/Ticker

http://developer.mbed.org/platforms/KL25Z/
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
https://github.com/rxtx
http://www.gnu.org/licenses/lgpl.txt
https://developer.mbed.org/handbook/Ticker

