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Project Vision 
In many parts of the world, touch typing has 

become such a ubiquitous skill that children learn it 

in their first few years of schooling. Although 

numerous interactive learning systems for touch 

typing exist, currently no software exists to provide 

feedback on whether the correct finger is used to 

press each key or the force with which the key was 

pressed. Incorrect finger usage and typing force not 

only reduces typing efficiency, but could also lead to 

ergonomic injuries later, such as repetitive motion 

injury and carpal tunnel syndrome. To address this 

problem, we have developed a smart glove capable of 

correlating the finger used to each keystroke, thus 

enabling the learning software to track finger usage 

and pressure while typing. 

 

Objectives 

 Design and optimize a smart glove with 

pressure sensors located at the fingertips 

 Develop an interactive learning software for 

touch typing that integrates pressure sensor 

feedback with visual feedback for the user 

 Integrate software and hardware components 

 

Design Criteria 
 In designing the Smart Glove, we 

considered several key design criteria that needs to be 

met. First, our system must be able to detect all 

keystrokes and the associated finger pressures 

generated by the user. We set the design goal such 

that our system should be able to accurately detect 

key presses at 212 words/minute or 17.8 

keystrokes/second, a rate achieved by the world 

record holder. In reality, most users of a touch type 

learning program will type under the average speed 

of 40 words/minute or 3.3 keystrokes/sec [1]. In 

addition, since different keyboards vary in the force 

required to register a key press, our force sensors 

must be able to detect forces in the range of 0.25N to 

0.85N for our Smart Glove to be compatible with all 

keyboards [2]. Finally, the system should be highly 

accurate and achieve at leave 90% sensitivity and 

specificity.  

 

Systems Overview 
The Smart-Glove system consists of an 

instrumented glove containing force sensors, a 

Freescale mbed microcontroller[2] to conduct basic 

thresholding processes, and a software-based typing 

framework that compares keystroke data with force 

data and displays user feedback on a GUI. When the 

user presses a key, two inputs are generated and 

passed to the system. First, the key listener on the PC 

registers a “key pressed” event. Simultaneously, the 

resistance of the force sensors on the finger used will 

drop below a threshold value. An mbed 

microcontroller collects and conducts basic 

thresholding of the data from the force sensor. The 

typing framework receives data from the mbed 

software over serial connection using the RXTX 

Library[4]. In addition, the framework is notified of 

“key press” events by the key listener. The Typing 

Framework integrates this data and uses it to provide 

feedback via the GUI so that the user can correct the 

fingering or pressure used. 

 

 
Figure 1. Schematic of hardware setup 

 

 
Figure 2. Software architecture  

 

 

Instrumented Smart-Glove 
In order to map key strokes to the fingers 

being used, a force sensor is attached to each finger 

of the Smart Glove. The FSR400 small round force 

sensing resistor from Interlink Electronics was used 

to measure the finger pressure. The FSR400 is a 

flexible force sensor with a 7.62 mm diameter force 

sensitive area that fits easily on the tips of the fingers 

without hindering finger movements. 



These small force sensors contain a 

piezoresistive component. In the non-actuated state, 

the force sensors have a resistance of 10 MΩ.  When 

actuated, the resistance of the force sensors (2.5 kΩ 

to 1 MΩ) varies linearly with respect to the amount 

of force in the range between 0.1-10N, where a lower 

resistance value corresponds to a higher force. 

Equation 1 shows the relationship between force and 

resistance, fitted to an affine model. The active range 

of these force sensors is able to detect the range of 

forces necessary to actuate all types of keyboards as 

specified in the design criteria.   

 

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = −100758𝐹𝑜𝑟𝑐𝑒 + 1010076 
Equation 1. Affine relationship between force and 

resistance 

 
Figure 3. Force sensor 

 

A voltage divider is used to measure the 

resistance of the force sensor (figure 3). The voltage 

divider is powered using the MBed’s 3.3V output. A 

1 kΩ resistor (R1) is used on each branch of the 

voltage divider to ensure that the current never 

exceeds 3.3 mA and that the 3.3V power is never 

shorted to ground.  

 

 
Figure 4. Voltage divider circuit 

  

The resistance of the force sensors is 

calculated using equation 2. 

 

𝑅𝑖 = 1000 (
1 − 𝑣𝑖
𝑣𝑖

) 

Equation 2. Resistance of force sensor 

where vi is the voltage measured by the voltage 

divider.  

 

Freescale mbed Board 
A Freescale FRDM-KL25Z, an mbed 

Kinetis board [2] with an ARM Cortex M0+ 

processor [3] is collects and conducts basic 

thresholding of the data from the force sensor. 

Since the mbed board only has 6 analog 

channels, two mbed boards must be used to acquire 

data from both hands. For each Mbed board, channels 

PTB0, PTB1, PTB2, PTB3, and PTC2 were used 

corresponding to the pinky, ring finger, third finger, 

pointer finger, and thumb respectively.  

 
Figure 5. Mbed LK25Z Freescale Mbed signal 

 

Based on calibration data from an 

experienced typist, we have set the threshold at 100 

kΩ for a finger press detected and 10 kΩ for finger 

pressed too hard. The thresholds were determined by 

having the user type a calibration sentence “The 

quick brown fox jumps over the lazy dog.” while 

recording the forces necessary actuate each key press 

10 times. The threshold for finger presses was chosen 

to maximize detection of true presses, while 

minimizing false positives due to the overlap between 

the observed resistance ranges for finger presses and 

resting finger positions. 

 

Typing Framework 
The Typing Framework is in charge of the 

PC side of the Keep In Touch system, and is 

implemented in TypingFramework.java. As 

mentioned in the Systems Overview section, the 

KeyListener send “key press” data to the Typing 

Framework every time the user presses a key on the 

keyboard and each of the two mbed boards, one for 

each hand, send finger data to the PC 40 times per 

second via the serial port, which is read by the 

Typing Framework using the Java RXTX serial 

communication library [4]. The Typing Framework is 



responsible for processing these three data streams 

and turning them into meaningful feedback for the 

user. To do this, it first efficiently interleaves the two 

high-throughput finger data streams from the two 

mbeds to produce one stream with the data points in 

chronological order. It then compares the resulting 

finger data stream with the key press stream gathered 

from the KeyListener and performs inference to 

determine which finger was most likely used to press 

each key in the key press stream. It also records if a 

finger was pressed too hard. In addition, the Typing 

Framework also reads from the lesson file and uses it 

to assess correctness of the keys typed. Thus, for each 

character in the lesson, it will figure out if the user 

typed it correctly, typed the wrong key, typed with 

the wrong finger, typed too hard, or made some 

combination of these three errors. Finally, it 

computes some basic statistics such as accuracy and 

words per minute. It sends the typing feedback and 

statistics to the GUI which displays it to the user.  

 

Timing and Synchronization 

Accurate timing and synchronization is 

crucial to correlating finger press data with key press 

events. Our typing program must be able to detect at 

least 1060 keystrokes/min or 17.7 keystrokes/sec, 

which is the typing speed of the current world record 

holder. This is far faster than a beginning typist 

learning to type using our program. However, to be 

safe, we have decided to use the world record 

holder’s typing speed as the design criteria. To detect 

18 keystrokes/sec, based on the Nyquist theorem, the 

force sensors must be sampled at twice the frequency, 

or 36 keystrokes/sec. Since our Mbed code is capable 

of sampling all finger pressure data at a rate of 25 

samples/sec, no data will be lost due to 

undersampling. 

To establish synchronization, we used the 

Ticker object [5] from the mbed.h library. The Ticker 

object generates timed interrupts at a user-specified 

rate. It can be tied to interrupt service routines via its 

attach() method. The Typing Framework on the PC 

will send a signal to each of the two mbed boards to 

start the Ticker, while recording the PC timestamp at 

that instant. Once the Ticker has been started, each 

mbed will continuously measure the resistances of 

the force sensors and compare it with the thresholds 

for finger pressed and force overload at a sampling 

rate of 25 samples/sec. Based on whether the 

thresholds for any of the fingers were achieved, a 

finger ID is generated and stored in the mbed serial 

port buffer The data is stored in a 4 byte packet, with 

the first byte representing the finger ID and the last 3 

bytes encoding the timestamp. 

On the PC side, the Typing Framework 

collects data from both mbeds and interleaves them  

to create a stream of data points corresponding to 

finger presses from both hands that is in 

chronological order. The Typing Framework must 

transfer data from the RXTX serial port input stream 

[4] buffer to PC memory every two seconds. This is 

because the input stream is just an abstraction hiding 

the serial port buffer handled by the serial port 

hardware. At the rate data arrives from the two mbed 

boards, this buffer will overflow shortly after two 

seconds of neglect. 

 

Inference Problem: 

 To eliminate nonsensical force sensor data 

(eg. from random finger taps) or to break ties, we can 

calculate the probability that a finger was used given 

a keypress to determine which finger was most likely 

used. To do so, we make a few key assumptions:  

 The timestamp of the finger press and the 

timestamp of the keypress are very close 

 For any given finger, it is unlikely that a key 

far from that finger was pressed 

Based on these assumptions, we can solve for the 

Maximum a Posteriori estimate of X given Y to find 

the X which maximizes P(Y|X) using the equations 

listed in equation 3. Let X = finger used + timestamp 

recorded on MBED and Y = key pressed + timestamp 

recorded on PC.  

 
Equation 3. Inference problem 

 

This set of equations further assumes an uniform 

distribution of X (that the user is equally likely to 

have selected any key). To further improve the 

accuracy of this model, we can add a non-uniform 

prior to better predict finger usage. 

 

GUI: 

The GUI was programmed using the Java 

swing and AWT code libraries, which contain classes 

for making graphical components, such as buttons, 

labels, and frames. The user interface layout prompts 

the user to type certain phrases and displays relevant 

statistics, such as words per minute, percentage 

correct, and feedback on finger usage. The user will 

attempt to type the prompted sentence using the 

correct finger. 10 colored boxes located below the 

prompt sentence inform the user about which fingers 

to use to press the next key. As the user types, a 

cursor located below the prompt sentence indicates 

where in the sentence progression the user is at and 

the box corresponding to the finger to use turns 



yellow. After typing the full sentence, the GUI will 

show what the user has typed with each letter color-

coded to provide feedback on whether the correct 

finger and key were pressed.  

 

 
Figure 5. GUI layout 

 

Future Directions: 

 In order to improve the Smart glove design, 

we would look into other force sensors. The FSR 400 

force sensors were too small to accurately detect 

finger presses in all hand orientations. Finger pads 

versus fingertips are used to actuate keys in the 

extended and curled positions respectively. In order 

to be useful, the Smart glove must be able to detect 

both of these cases. However, due to the small size of 

the sensors, only forces at the finger tips were 

detected reliably, causing a few extended finger 

presses to be missed. In addition, flexing the fingers 

without pressing key occasionally places a small 

degree of pressure on the force sensors, which can 

trigger a key press reading. A larger, more flexible 

sensor is needed to capture all finger press readings. 

In addition, an improved mounting procedure would 

help reduce the number of false positives.  

To further improve the sensitivity and 

accuracy of the system, we can incorporate a non-

uniform prior assumption to the inference problem to 

improve our finger usage predictions. We can also 

add in a calibration mode in the GUI that the user 

must complete at the beginning of each session to 

calibrate for the user’s natural typing and resting 

force of each finger as well as variation in keyboard 

actuation forces. This data will be used to further 

optimize the thresholding and smoothing functions to 

improve the accuracy of the device and reduce the 

number of false positives.  

 In addition, to improve user experience, we 

can also display additional statistics in the GUI to 

give the user more feedback on how much pressure is 

used on average for each letter or finger. Finally, we 

can also implement an additional mode to track user 

history throughout the learning course.  

 

Conclusion: 
 In conclusion, our team has built and 

demonstrated a Smart Glove prototype designed to 

provide touch type learners with more information 

about finger usage and finger pressure. Small 

FSR400 force sensors placed at the tips of each finger 

sense when the finger has been used to press a key. 

Two Mbed boards collect and process the data before 

sending it via serial connection to a Java-based 

Typing Framework on the PC, which then compares 

finger pressure data with Keystroke data to determine 

finger usage. Finally, feedback is displayed to the 

learner on an intuitive graphical user interface. In 

addition to the speed and accuracy emphasized by 

existing typing learning programs, our device will 

help new typists develop good ergonomic habits, 

which will improve their health and well-being in the 

long run. 
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