

1. Introduction
 This goal of this project was to develop a
usable household device that would incorporate an
embedded system while maintaining the original
functionality. The final design that was agreed on
was to develop a coffee table that would respond
to multiple kinds of sensor inputs and create
varying visual displays as a result of those
signals. The table utilized a glass top that allowed
the passing of infrared waves to pass through and
detect the motion and presence of objects on top
of it. Beneath the glass was an LED array that
would light up in various ways in response to the
signals transferred to the mbed. The code is
decoupled from the signal type so any type of
sensor can be used as long as it sends a digital
signal into the mbed board.

2. Hardware Design
 The forefront of the design phase was to
somehow create a method of displaying the LED
NeoPixels while at the same time creating a
surface that objects could be placed on top of.
After researching a variety of sensors and similar
projects, we came down to two options on how to
solve this issue. The first approach was to use a
solid top and to place cameras either at the
perimeter of the table or in the room that the table
would be placed. It would then be possible to
determine whether or not an object was on the table by
processing the footage. Additionally, it would be able
detect motion on top of the table and indicate to the
code how to respond. However, this was determined to
be too computationally intensive for the mbed board.
This would require an external server to handle the
calculations and then to determine which NeoPixel
lights should be turned on or off.
 The other approach was to use IR sensors
with a glass table top. When used with large
wavelengths, in this case 940 nm, infrared signals can
pass through translucent objects. This meant that we
were able to send the signals through the glass table
top and that they would then reflect off any objects that
they hit. The downside to this approach was that dark
objects had the potential of absorbing the IR waves and
as a result the IR receivers would not notice the
existence of an object. Ultimately our team decided on
using the IR sensor approach because it did not require
an external server and it was possible to embed the IR

emitters and receivers within the LED NeoPixel array.
This would later allow the software to have an easy
time determining which LEDs would need to be turned

on based on location relative to the IR receivers that
sent the signals.
 The next design choice was how to wire all
the different components. The IR emitters were easy to
hook up: just put them at set intervals in the LED array
and supply them with the same PWM signal. The
NeoPixels were handled in a similar fashion with the
only difference being that a control pin had to be
passed from the mbed board to issue signals for the
various light patterns. The difficulty came with how to
group the different IR receivers to find the most
efficient way of processing the data. Because there
weren’t enough pins on the mbed board to connect all
the IR receivers directly we were faced with a choice
of acquiring multiple mbed boards to accommodate the
extra receivers or using multiplexers in order to
consolidate the different signals into one pin. While
another mbed board had various advantages such as
providing more power and allowing for faster response
times, it needlessly wasted pins. Furthermore, if the
timing was off sync between the two boards, it was
possible, although unlikely, for undefined behaviors to
occur. On the other hand, multiplexers enabled us to
use only one mbed, thus eliminating timing and saving

LED Coffee Table

Edward Lai, Jin Kim, Matt Miller

Dept. of Computer Science, UC Berkeley. Email:
{edward.lai, jinhunkim, mbmiller}@berkeley.edu

Figure 1 - IR sensor approach to detecting

pins. However, this approach would require us to
cycle through all the different channels on the
multiplexer in order to find whether or not an IR
receiver detected an object or motion. This would lead
to slight time delays in terms of responsiveness.
Additionally we were uncertain if we could generate
enough power for the entire LED array utilizing only
one mbed board as the power source. In the end, we
decided to go with the one mbed and multiple
multiplexer approach in order to ensure that all
components were operating on the same clock.

3. Software Design
 For our project we needed the software to be
able to handle incoming signals that represented the IR
receivers detecting objects or motions while at the
same time being able to produce commands for the
NeoPixels in order to respond to the inputs. The main
decision point here was whether or not we wanted our
code to run serially or in parallel. Under the serial
approach all our code would run on a single thread
guaranteeing that it would have sufficient resources
and would avoid any concurrency problems that may
or may not occur. This would be the simplest
implementation and would allow the mbed board to
respond very quickly to a detected signal by activating
the light within the block of code that detected the IR
receiver signal. However, if this were to occur for
multiple IR receivers at the same time the code would
generate some delay when multiple objects were
placed on the table at the same time and all the
corresponding lights turning on as well. There is also
the problem that this implementation would have a
hard time processing more complicated light patterns
which require state. This would require additional
calculations between each read of the sensors making
the overall code slower and less responsive.
 The second approach that we considered was
a two thread implementation. The first thread would
be in charge of handling the incoming IR signals and

update an internal representation of the board where
objects were located. The second thread would then
read the contents the internal representation and
determine which lights to turn on and modify. This
approach would allow a faster read time of the IR
receivers allowing the code to approach real time
reading of the signals faster. Furthermore it would be
possible to group together changes and to send out
batch changes as opposed to individual ones that we
would find in the serial version of the code. However,
this implementation creates a problem where there can
be some delay between the first thread updating the
internal representation and the second thread
recognizing that an update had occurred and generating
the appropriate NeoPixel commands. This delay would
be increased with more complicated patterns resulting
in the same problem as in the serial version of the
code.
 The last implementation that we considered
was to have one master thread in charge of reading
from the IR receivers and to spawn a new thread
whenever an object or motion was detected. Each
thread would be in charge of all calculations in regards
to light patterns in regards to the object or motion that
spawned it. The thread would then either kill itself
when the light pattern was finished or the master
thread would kill it when the object that spawned the
child thread was removed from the board. This
implementation minimizes the gap between IR receiver
signals and light patterns being displayed and supports
complicated patterns as well. However, this approach
requires memory for each thread in addition to
additional resources being used to store a table linking
each signal to it’s corresponding thread. Furthermore
there could be conflicts between two threads over how
to change an LED light and this could cause undefined
behavior but could be remedied with an arbitrary
method breaker. Ultimately the second approach with
two threads was chosen due to better response times
than the serial version of the code and uncertainty over
how many threads the mbed could support in addition
to memory constraints.
 Under this implementation we have one
thread loop through the four multiplexer signals and
loop through the sixteen channels of each multiplexer.
Upon detecting a signal it will immediately update the
internal representation of the board and continue to
loop through the IR receiver signals. The second
thread then reads from the internal representation of
the IR receiver signals and determines which NeoPixel
lights need to go on. It can then update the internal
representation that keeps track of which lights are on
and off. It then proceeds to generate the proper signals
and sends these out. Afterwards, this thread can look
for any multistep patterns in the internal light
representation and update the corresponding signals
appropriately as well.

Figure 2 - Wiring of LED array and IR sensors to
mbed board using multiplexers

4. Results
 In our final implementation we were able to
create a table of 224 lights using 56 IR emitters and
receivers. The table was able to display a myriad of
colors and was able to accurately detect objects on top
of the table through the glass top. The table was able
to detect everyday mugs and notebooks with decent
accuracy along it’s surface. The only exception to this
was in the presence of black objects that absorbed the
IR waves instead of reflecting them back. However, we
found in certain lightings and angles of the objects the
LED display was able to pick up on the objects as well.
The table was also able to detect motion roughly one
foot above the glass surface of the table.

This was an impressive accomplishment due to the
accuracy of the table at the given distance. The table
was able to detect only the suspended object and only
lit up beneath it, meaning that the surrounding areas
did not light up. This was a major accomplishment
given that the IR emitter and receiver density was high
enough that there was no part of the board that was
unable to detect objects on top of it. Despite this high
sensor density, the sensors did not overlap domains but
instead remained distinct. Another noticeable property
of the final implementation was the response rate of
the mbed board. Although the chosen implementation
was not considered the fastest in terms of response
speed in comparison to some of the other
implementations, there was no noticeable lag during
the testing phase of this project. This in particular
exceeded our expectations as we feared delays would
interfere with the smoothness of motion based effects.

5. Problems
 While creating this project we faced a variety
of problems. The first of these problems was a result of
the IR receivers that we chose to use. These receivers
detected 38 kHz signals, which was standard for tv
remotes and other devices that use infrared waves.
Because of this the board would display erratic patterns

whenever infrared signals were detected by the IR
receivers aside from those generated by the IR emitters
within the board. Although not done in this project, a
simple solution to this problem would be to swap out
the IR receivers with ones of another frequency.

 The second issue that we faced was the range
of the IR emitters. The emitters sent out waves in all
directions and as a result had a tendency to hit the IR
receivers directly without being reflected off of any
other objects. This would result in the program
thinking that the entire board was constantly covered
and result in the whole board always being lit up. This
problem was remedied by placing folded aluminum
foil strips between the IR receivers and the IR emitters
high enough to block direct IR signals from hitting the
IR receivers but short enough to not interfere with
reflected waves.
 Another issue that we encountered while
working on this project was with the multiplexers. The
multiplexers were not ideal and would occasionally
blur two different signals resulting in the program
believing that their were objects on the table that did
not really exist. This problem only occurred in a few
multiplexers though, so this was a hardware issue and
not easily solvable. However, the multiplexers also
created a problem when interacting with the code on
the mbed. The mbed would send certain selector bits to
the mux, hoping to read from the corresponding
channel. However, the rate at which the multiplexer
was able to return the corresponding data was
significantly slower than the codes query rate so the
multiplexer ended up returning data from other
channels to the mbed. This problem was solved by
adding a 0.001 second delay to the code which gave
the multiplexer enough time to properly generate the
signal containing the channel information.
 The final issue we encountered had to do with
the power supply. Although we had earlier opted to
use one mbed instead of two in order to prevent issues
with different grounds we ended up noticeably
overdrawing our power supply. Although everything

Figure 3 - LED NeoPixels responding to hand
over IR sensors

Figure 4 - LED Coffee Table reacting to remote
control IR signals

was able to function, the NeoPixels became noticeably
dimmer as we added more and more rows of LEDs, IR
emitters, and IR receivers. This also extended to the IR
emitters, where the strength and distance of that the IR
waves travelled dropped as more components were
added to the circuits. This issue could have been easily
fixed with an additional power source but was not done
within the bounds of this project.

6. Lessons Learned
 While working on this project the team
learned many key concepts about working with
embedded system designs. The most important of
these was the criticalness of the design phase in
conjunction with prototyping. Although during the
design phase we came up with multiple approaches to
both the hardware and software sides of this project we
only reasoned through them at a theoretical level
before settling on which design we wanted to follow
through on. Even the one prototype that we developed
only served to prove that the IR signals were capable
of passing through the glass. This resulted in us
prematurely making some design decisions. For
example we had fears of lag with the two threaded
implementation of the software. However, had we
prototyped this, we would have seen, as with the final
product, that this would not be an issue. Knowing this,
we could have explored similar implementations
without fear of display latency and also tested the
memory bounds further as well. Although creating a
prototype for the video sensor as opposed to IR sensors
may have been difficult and time consuming there may
have been valuable insight in there as well.
 Hardware considerations were another aspect
of the project that our team did not properly assess. As
a whole we vastly underestimated the time to assemble
and debug the circuitry of the system. This problem
was exasperated by us not acquiring spare parts to
replace broken or glitchy gadgets within our product.
This ended up with us having to reduce the size of the
final product to accommodate the number of working
components that we had. Also the increased time spent
in assembly and adapting to unexpected hardware bugs
greatly limited the time we could spent on software
development. This resulted in simplifying light patterns
as well as being unable to achieve all of the goals set at
the start of this project.
 The last thing we learned was power and logic
flow throughout the project. On the hardware side it
would have been beneficial to the team if we had
calculated the power consumption of the NeoPixels
and IR sensors and compared it to the mbed board
power supply. As previously noted we experienced a
drop in performance within our components as a result
of not having enough power. Had this been previously
calculated it would have been possible to switch to less
power consuming alternatives or to obtain additional
power sources. Within the software more formal

analysis would have greatly aided in run time
calculations. This would have helped in choosing the
appropriate implementation as well as whether or not
other approaches should have been considered. This is
especially the case in regards to how many and the use
of threads within the project. Taking into account
average use case as well as the extremes would have
been more concrete and would have served as a better
metric for selecting a software design.

7. Next Steps
 This project serves as a baseline from which a
lot of improvements can be made. The most basic
improvement that can be made is to increase the
NeoPixel and IR sensor density in order to improve
accuracy of the sensors. This would enable more
precise and complex patterns in response to a greater
variety of actions. Other simple features that could be
expanded to would be the use of different kinds of
sensors. Because the code is decoupled from the kind
of sensor being used it would be possible to use
pressure, temperature, and audio sensors in order to
activate the light patterns as well. This would open up
many ways in which the LED coffee table could
interact with the environment. Along these same lines,
more complicated light patterns could be implemented
as well. This could include ripple effects from objects.
This would require some modifications to the code to
maintain previous states as well as calculating new
light locations based on previous light arrangements.
 More fundamental changes to the design
could also be made in order to improve the final
project. An external power source would be able to
overcome some of the problems listed. Also a more
complex platform would allow the support more
extensive software implementations. For example, the
multithreaded implementation with a master and many
child threads would be able to support much more
complex patterns. Furthermore it would be possible to
develop interesting games such as Tetris on the LED
coffee table. This would be possible by tracing the
hand movements with the IR sensors to determine how
the player would want to manipulate the falling blocks.
Overall the LED coffee table developed serves as a
good base but leaves room for many different kinds of
improvements and expansions.

Figure 5 - Hardware Prototype displaying IR sensors
working through glass table

