
Locked & Loaded: An Aggressive Smart Lock 
Quinn Johnson 

UC Berkeley 
204 Cory Hall; Berkeley, CA 

94704 
quinnhj@berkeley.edu 

Harrison Tsai 
UC Berkeley 

204 Cory Hall; Berkeley, CA 
94704 

harrison.tsai@berkeley.edu 
 

David Wu 
UC Berkeley 

204 Cory Hall; Berkeley, CA 
94704 

wu.david@berkeley.edu 
 

 

INTRODUCTION 
Our EECS C149 class project is a retaliatory smart lock. 
We model the lock and retaliation attempts as a state 
machine governed by a combination of sensor inputs, which 
focus on the security of the owner, as well as strategic 
offense against intruders. Shown below is a prototype of the 
system. 

 
Figure 1. The Locked and Loaded Setup. 

This project focused on two key features: First, a 
convenient keyless entry; Second, intruder retaliation. The 
first feature uses an android app that sends a password 
through Bluetooth to the system, and the second feature 
utilizes an IMU, IR sensor, and Nerf gun. 

RESOURCES 
• Arduino Uno 

• Nexus 7 

• BlueSMiRF Bluetooth Module 

• Futaba S3003 Servo Motor 

• TSOP38238 IR Receiver 

• IR204-A IR Transmitter 

• Adafruit 9-DOF IMU 

• Nerf N-Strike Elite Rapidstrike CS-18 Blaster 

Additional resources include a variety of resistors and a 
TIP120 transitor. 

MODEL 
Our system is designed as a hierarchical state machine. A 
high level view of the state machine is shown below. For 
formatting purposes, we have omitted the guard/action 
transitions in the diagrams. 

 
Figure 2. Hierarchical state machine. 

As shown above, our finite state machine has three primary 
states. The “off” state describes a state where the system is 
unresponsive to any inputs except for a user command to 
put it into a “Lock” state. Shown below is the 
“Lock/Unlock” state.  

 
Figure 3. Lock/Unlock FSM. 

The “Lock/Unlock” state describes the actions of locking 
and unlocking the door. We start by always entering into a 
locked state. In order to unlock the door, we validate a 
password sent by the Nexus 7 over Bluetooth. Once 
unlocked, the user may send a lock command to transition 
the system back to the locked state. If no input is given after 
a predetermined timeout threshold, the system will 
automatically transition back into the lock state. 



 
Figure 4. Retaliate FSM. 

The only way to enter the “Retaliate” state is to trigger an 
“intrusion”. We define an intrusion to be when someone 
attempts to “break down” your door. We measure this with 
the accelerometer and an infrared sensor. There must be 
sufficient movement on the door, measured by taking the 
magnitude of the accelerometer, and a break in the IR 
sensor for an intrusion. The “Retaliate” state is 
straightforward – we simply fire the Nerf gun for a 
predetermined amount of time, then move back into a ready 
“armed” state. This armed state simply checks if the system 
should fire again, or if it should move back into the safe 
“locked” state. 

DESIGN 

Hardware 
We chose the Arduino platform for its simplicity and ease 
to quickly develop prototypes. All of the hardware, 
excluding the Nerf gun, we select integrates with the 
Arduino platform natively. To integrate the Nerf gun, we 
re-wired the gun so we could electronically control its fire. 
Additionally, we selected the servo motor based on the 
torque required to turn our home and model lock. We 
utilized a torque wrench to measure the torque required to 
turn these locks, and found that a 4.1 kg-cm servo motor 
was more than sufficient for the requirement. The hardware 
configuration can be seen in the image below: 

 
Figure 5. The schematic diagram of the project. 

In addition, a 9-DOF is mounted on the model of a door 
frame to detect intrusion. The serial clock line (SCL) and 
(SDA) pins on the IMU are part of the I2C protocol for 
components to communicate with each other. SCL and 
SDA are connected to two analog pins. In this project, pin 
A4 on the Arduino is connected with SDA and A5 is 

connected with SCL. The readings are initially read as raw 
data, but with the help of libraries, it can be transformed to 
standard units for acceleration: m/s2. For this project, we 
are using the magnitude of the acceleration recorded. 

 
Figure 6. The magnitude of acceleration. 

The infrared transmitter is an LED that emits light at 940nm 
wavelength, invisible to the human eye.  

Software – Arduino 
The Arduino code followed a similar pattern as the Hill 
Climb C code done during lab. We defined each state using 
if-else blocks in the general Arduino loop method. A 
snippet of these blocks is shown below: 

if (lockState == locked && 
Serial.available()) { 
    validated = false; 
    lockState = validateUnlock; 
} else if (lockState == unlocking && 
lockServo.read() == SERVO_UNLOCK) { 
    lockState = unlocked; 
    unlockTime = millis(); 
	
  

 Figure 7. A snippet of the transitions in the Arduino 
code. 

Our system enables any Bluetooth device to connect to it, 
and requires password validation to interact with the 
system. This emphasizes the real time behavior of our 
system since a command can be passed into the system at 
any time. An example of the Bluetooth code is shown 
below: 

 

while (Serial.available()) { 
    char received = Serial.read(); 
    if (received == ',') { 
        validateKey(dataFromBT, "unlocked") ? 
lockState = locking : lockState = unlocked; 
        dataFromBT = ""; 
        break; 
    } 
    dataFromBT.concat(String(received)); 
} 
	
  

 
Figure 8. A snippet of the Bluetooth processing in the 

Arduino code. 

The bulk of the logic resides in the Arduino code since it 
controls the various defined states. The code itself is 
relatively straightforward since it simply follows the state 
machine; however, the majority of the guards are very 



sensitive to thresholds. As such, much more time was spent 
testing the various thresholds to calibrate the system 
accordingly. Since most of the sensors had fine thresholds, 
we included delays throughout the design in order to 
prevent chattering. The design for the IR sensor best 
exemplifies this. By enforcing a minimum time in an armed 
state, it avoided busy waiting swapping in and out of an 
armed state when the IR sensor is just on the border of its 
threshold. 

Software – Android 
We developed an android app to interact with the system. 
The application can connect to the Arduino system at any 
time. A screenshot of the app can be seen below: 

 
Figure 9. The Locked and Loaded Android application. 

As shown in the screenshot, the application supports the 
ability to connect and disconnect to the system at any time, 
turn the system on and off at any time, and lock and unlock 
the system. We use password validation to verify if the user 
is “safe” and is allowed to interact with the system. For the 
purposes of the prototype, we set up the android app to 
directly interact with our system.  

In a real application, there would be a set up phase where 
we would pair the application with the smart lock. For 
instance, the software could run silently in the background, 
attempting to pair with open Bluetooth devices that match 
our smart lock. If the devices are paired somehow, either by 
a passphrase or RSA system, the app could be used to 
automatically unlock doors when in detectable range. 

ANALYSIS 
As an initial step in the project, we designed and planned 
our project around certain behaviors and modeled them as 
fundamental linear temporal logic equations (LTLs). We 
formed the five fundamental LTLs listed below: 

G(Bluetooth ∧  Locked => X(Validate Key)) 
In any state that we receive a Bluetooth signal while locked, 
we will next validate the key. This is a defining 
characteristic of our project because it provides 
fundamental security by restricting users. It ensures that 
only valid users are able to pass messages and interact with 

our system. This was implemented in the Arduino section 
of the code where every read message was validated before 
taking any action. Our validation is done through password 
checking. The user must submit a valid password with each 
command they send. 

G(IR Sensor ∧  Locked => X(Armed)) 
This LTL defines the requirement that an intruder must be 
present in order for the system to fire. In a safety critical 
application such as our project, eliminating false positives 
is a necessity. Our solution was to have a the IR sensor act 
as a “tripwire” to ensure the Nerf gun would be shooting at 
a target instead of blank space. Additionally, this LTL 
states the obvious by claiming that an intruder can only be 
breaking in if the door is locked. This was simply 
implemented in the Arduino code as a guard before moving 
into the retaliate state. 

G(Unlocked => F(Locked)) 
Since safety is a key value in our system, a requirement is 
to always move from the unlocked state to the locked state. 
This is a fundamental component in our system because we 
always assume a locked state is the safest state. In our 
system, there are two possible ways to move back to the 
locked state from the unlocked state. First, we can validate 
user input to relock the door. This follows the core idea that 
the user can relock their door. Second, the door will relock 
via timeout. Since we specify a timeout in our system, the 
door will always relock itself after a given amount of time. 

G(¬Locked => ¬X(Armed)) 
This LTL exemplifies the requirement that non-locked 
states cannot move into the armed state. This primarily 
addresses the unlocked and off states, showing that both 
states cannot move into retaliation. This reinforces the 
second LTL presented earlier by preventing wrong 
retaliations. As mentioned earlier, eliminating misfires is a 
primary concern in this system, so this LTL is a necessary, 
fundamental component of our model. This LTL was 
implemented in the Arduino code by ensuring no non-
locked states could move into the retaliation state. 

G(Locked ∧  Validated => F(Unlocked)) 
This LTL represents the requirement that users must be 
validated and the system must be in a locked state before 
moving to the unlocked state. This is inherently to our 
system since validation essentially acts as our “key” into 
the system. We implemented this LTL in the Arduino code 
by using the password validation within the locked state as 
users try to move to the unlocked state. 

These LTLs fundamentally shaped our state machines and 
approach towards the project. By creating these LTLs we 
were able to simplify the project to a few finite states, and 
quickly implement each section. In addition, by defining 
these LTLs we were able to better redesign the system to 
account for flaws (violations in the LTLs during 



verification). One key example is how we shifted from a 
proximity based approach to a password verification 
approach. Given our third LTL, we wanted to ensure the 
unlocked state would eventually move to the locked state; 
however, the “finally” clause does not specify time. Our 
initial design of proximity sensing could potentially stay in 
an unlocked state forever (where a user never leaves a 
specified radius around the door). Given the final LTL in 
combination with the previous concerns, we decided the 
proximity detection was insufficient due to the possibility 
of disconnects and the inconsistent signal strengths emitted 
from Android’s Bluetooth as it was very dependent on 
battery strength in addition to distance. This led to the 
combination of a password verification and timeouts as our 
new system where the system is forced to relock itself given 
a maximum time for user input. This was able to enforce 
the third LTL very clearly as the timeout assured the system 
would relock, and the last LTL as users must validate 
themselves to unlock the door. By enforcing these LTLs 
through verification techniques, we were able devise the 
design presented previously with faith that our model will 
behave as intended. 

One key concept that our system involves is concurrency. 
The Bluetooth integrated into our system is inherently 
concurrent since we allow any number of messages and any 
number of devices to connect to our system at any time; 
however we deal with this in a serial manner. 
Unfortunately, there were a number of issues with the 
Bluetooth that we had to deal with. First, the Arduino 
platform utilizes a limited buffer to process data transmitted 
via Bluetooth. Additionally, the serial port wrapper on 
Android has issues with receiving rates during reads. To 
resolve these issues we limited the speed of sending from 
Android such that the Arduino would always be able to read 
faster than Android could write. 

In addition, we wanted to build a reliable real time system. 
Since Bluetooth can disconnect, we had to account for 
disconnections from either Android or Arduino. In either 
case, we assumed an incomplete message was invalid, and 
rejected the user. Upon disconnect, the Android application 
would notify the user of disconnection, and require the user 
to reconnect. Since our Arduino is always listening for 
Bluetooth connections, we simply have the Android device 
reconnect and resend the incomplete messages. Due to our 
limited number of Android devices, we were not able to 
fully stress test this part of the project and the system is 
possibly prone to a DoS attack; however, in the case that 
Bluetooth is overwhelmed, the system will simply stay in 
the locked state because of the timeout feature in the lock. 

 

CONCLUSION 
In this project, the majority of the time was spent in our 
formal analysis. As we designed and implemented each 
component of our machine, hardware limitations and 

violated LTLs caused constant redesign. The prime 
example is with the Bluetooth proximity explained earlier. 
The inconsistent strengths across devices and various power 
levels caused a redesign in how we decided to approach 
verification. While the final state machine is not very 
complex, this system reinforces the importance of formal 
verification. Letting the LTLs represent our system 
requirements, we were able to use them to guide our design 
process and truly create a system that models the intended 
behavior. 

As an initial prototype, this project does a fairly good job 
demonstrating the benefits and negative consequences of a 
retaliatory smart lock; however, further steps ought to be 
taken. Our system was heavily designed around our 
personal use case. The thresholds are not very 
representative of a typical door since there was a very 
limited amount of testing. Since our servo simply rotated a 
fixed degree each time, it may not work on other deadbolts 
if those locks require a different amount of rotation and/or a 
different torque. A better system would incorporate a 
stepper motor to take advantage of its positional control via 
fractional increments. Sacrificing the high speed and torque 
of a servo for positional accuracy is appropriate as we want 
to prevent the lock from breaking, and accurately support a 
variety of locks. 
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