
Locked & Loaded: An Aggressive Smart Lock
Quinn Johnson

UC Berkeley
204 Cory Hall; Berkeley, CA

94704
quinnhj@berkeley.edu

Harrison Tsai
UC Berkeley

204 Cory Hall; Berkeley, CA
94704

harrison.tsai@berkeley.edu

David Wu
UC Berkeley

204 Cory Hall; Berkeley, CA
94704

wu.david@berkeley.edu

INTRODUCTION
Our EECS C149 class project is a retaliatory smart lock.
We model the lock and retaliation attempts as a state
machine governed by a combination of sensor inputs, which
focus on the security of the owner, as well as strategic
offense against intruders. Shown below is a prototype of the
system.

Figure 1. The Locked and Loaded Setup.

This project focused on two key features: First, a
convenient keyless entry; Second, intruder retaliation. The
first feature uses an android app that sends a password
through Bluetooth to the system, and the second feature
utilizes an IMU, IR sensor, and Nerf gun.

RESOURCES
• Arduino Uno

• Nexus 7

• BlueSMiRF Bluetooth Module

• Futaba S3003 Servo Motor

• TSOP38238 IR Receiver

• IR204-A IR Transmitter

• Adafruit 9-DOF IMU

• Nerf N-Strike Elite Rapidstrike CS-18 Blaster

Additional resources include a variety of resistors and a
TIP120 transitor.

MODEL
Our system is designed as a hierarchical state machine. A
high level view of the state machine is shown below. For
formatting purposes, we have omitted the guard/action
transitions in the diagrams.

Figure 2. Hierarchical state machine.

As shown above, our finite state machine has three primary
states. The “off” state describes a state where the system is
unresponsive to any inputs except for a user command to
put it into a “Lock” state. Shown below is the
“Lock/Unlock” state.

Figure 3. Lock/Unlock FSM.

The “Lock/Unlock” state describes the actions of locking
and unlocking the door. We start by always entering into a
locked state. In order to unlock the door, we validate a
password sent by the Nexus 7 over Bluetooth. Once
unlocked, the user may send a lock command to transition
the system back to the locked state. If no input is given after
a predetermined timeout threshold, the system will
automatically transition back into the lock state.

Figure 4. Retaliate FSM.

The only way to enter the “Retaliate” state is to trigger an
“intrusion”. We define an intrusion to be when someone
attempts to “break down” your door. We measure this with
the accelerometer and an infrared sensor. There must be
sufficient movement on the door, measured by taking the
magnitude of the accelerometer, and a break in the IR
sensor for an intrusion. The “Retaliate” state is
straightforward – we simply fire the Nerf gun for a
predetermined amount of time, then move back into a ready
“armed” state. This armed state simply checks if the system
should fire again, or if it should move back into the safe
“locked” state.

DESIGN

Hardware
We chose the Arduino platform for its simplicity and ease
to quickly develop prototypes. All of the hardware,
excluding the Nerf gun, we select integrates with the
Arduino platform natively. To integrate the Nerf gun, we
re-wired the gun so we could electronically control its fire.
Additionally, we selected the servo motor based on the
torque required to turn our home and model lock. We
utilized a torque wrench to measure the torque required to
turn these locks, and found that a 4.1 kg-cm servo motor
was more than sufficient for the requirement. The hardware
configuration can be seen in the image below:

Figure 5. The schematic diagram of the project.

In addition, a 9-DOF is mounted on the model of a door
frame to detect intrusion. The serial clock line (SCL) and
(SDA) pins on the IMU are part of the I2C protocol for
components to communicate with each other. SCL and
SDA are connected to two analog pins. In this project, pin
A4 on the Arduino is connected with SDA and A5 is

connected with SCL. The readings are initially read as raw
data, but with the help of libraries, it can be transformed to
standard units for acceleration: m/s2. For this project, we
are using the magnitude of the acceleration recorded.

Figure 6. The magnitude of acceleration.

The infrared transmitter is an LED that emits light at 940nm
wavelength, invisible to the human eye.

Software – Arduino
The Arduino code followed a similar pattern as the Hill
Climb C code done during lab. We defined each state using
if-else blocks in the general Arduino loop method. A
snippet of these blocks is shown below:

if (lockState == locked &&
Serial.available()) {
 validated = false;
 lockState = validateUnlock;
} else if (lockState == unlocking &&
lockServo.read() == SERVO_UNLOCK) {
 lockState = unlocked;
 unlockTime = millis();
	

 Figure 7. A snippet of the transitions in the Arduino
code.

Our system enables any Bluetooth device to connect to it,
and requires password validation to interact with the
system. This emphasizes the real time behavior of our
system since a command can be passed into the system at
any time. An example of the Bluetooth code is shown
below:

while (Serial.available()) {
 char received = Serial.read();
 if (received == ',') {
 validateKey(dataFromBT, "unlocked") ?
lockState = locking : lockState = unlocked;
 dataFromBT = "";
 break;
 }
 dataFromBT.concat(String(received));
}
	

Figure 8. A snippet of the Bluetooth processing in the

Arduino code.

The bulk of the logic resides in the Arduino code since it
controls the various defined states. The code itself is
relatively straightforward since it simply follows the state
machine; however, the majority of the guards are very

sensitive to thresholds. As such, much more time was spent
testing the various thresholds to calibrate the system
accordingly. Since most of the sensors had fine thresholds,
we included delays throughout the design in order to
prevent chattering. The design for the IR sensor best
exemplifies this. By enforcing a minimum time in an armed
state, it avoided busy waiting swapping in and out of an
armed state when the IR sensor is just on the border of its
threshold.

Software – Android
We developed an android app to interact with the system.
The application can connect to the Arduino system at any
time. A screenshot of the app can be seen below:

Figure 9. The Locked and Loaded Android application.

As shown in the screenshot, the application supports the
ability to connect and disconnect to the system at any time,
turn the system on and off at any time, and lock and unlock
the system. We use password validation to verify if the user
is “safe” and is allowed to interact with the system. For the
purposes of the prototype, we set up the android app to
directly interact with our system.

In a real application, there would be a set up phase where
we would pair the application with the smart lock. For
instance, the software could run silently in the background,
attempting to pair with open Bluetooth devices that match
our smart lock. If the devices are paired somehow, either by
a passphrase or RSA system, the app could be used to
automatically unlock doors when in detectable range.

ANALYSIS
As an initial step in the project, we designed and planned
our project around certain behaviors and modeled them as
fundamental linear temporal logic equations (LTLs). We
formed the five fundamental LTLs listed below:

G(Bluetooth ∧ Locked => X(Validate Key))
In any state that we receive a Bluetooth signal while locked,
we will next validate the key. This is a defining
characteristic of our project because it provides
fundamental security by restricting users. It ensures that
only valid users are able to pass messages and interact with

our system. This was implemented in the Arduino section
of the code where every read message was validated before
taking any action. Our validation is done through password
checking. The user must submit a valid password with each
command they send.

G(IR Sensor ∧ Locked => X(Armed))
This LTL defines the requirement that an intruder must be
present in order for the system to fire. In a safety critical
application such as our project, eliminating false positives
is a necessity. Our solution was to have a the IR sensor act
as a “tripwire” to ensure the Nerf gun would be shooting at
a target instead of blank space. Additionally, this LTL
states the obvious by claiming that an intruder can only be
breaking in if the door is locked. This was simply
implemented in the Arduino code as a guard before moving
into the retaliate state.

G(Unlocked => F(Locked))
Since safety is a key value in our system, a requirement is
to always move from the unlocked state to the locked state.
This is a fundamental component in our system because we
always assume a locked state is the safest state. In our
system, there are two possible ways to move back to the
locked state from the unlocked state. First, we can validate
user input to relock the door. This follows the core idea that
the user can relock their door. Second, the door will relock
via timeout. Since we specify a timeout in our system, the
door will always relock itself after a given amount of time.

G(¬Locked => ¬X(Armed))
This LTL exemplifies the requirement that non-locked
states cannot move into the armed state. This primarily
addresses the unlocked and off states, showing that both
states cannot move into retaliation. This reinforces the
second LTL presented earlier by preventing wrong
retaliations. As mentioned earlier, eliminating misfires is a
primary concern in this system, so this LTL is a necessary,
fundamental component of our model. This LTL was
implemented in the Arduino code by ensuring no non-
locked states could move into the retaliation state.

G(Locked ∧ Validated => F(Unlocked))
This LTL represents the requirement that users must be
validated and the system must be in a locked state before
moving to the unlocked state. This is inherently to our
system since validation essentially acts as our “key” into
the system. We implemented this LTL in the Arduino code
by using the password validation within the locked state as
users try to move to the unlocked state.

These LTLs fundamentally shaped our state machines and
approach towards the project. By creating these LTLs we
were able to simplify the project to a few finite states, and
quickly implement each section. In addition, by defining
these LTLs we were able to better redesign the system to
account for flaws (violations in the LTLs during

verification). One key example is how we shifted from a
proximity based approach to a password verification
approach. Given our third LTL, we wanted to ensure the
unlocked state would eventually move to the locked state;
however, the “finally” clause does not specify time. Our
initial design of proximity sensing could potentially stay in
an unlocked state forever (where a user never leaves a
specified radius around the door). Given the final LTL in
combination with the previous concerns, we decided the
proximity detection was insufficient due to the possibility
of disconnects and the inconsistent signal strengths emitted
from Android’s Bluetooth as it was very dependent on
battery strength in addition to distance. This led to the
combination of a password verification and timeouts as our
new system where the system is forced to relock itself given
a maximum time for user input. This was able to enforce
the third LTL very clearly as the timeout assured the system
would relock, and the last LTL as users must validate
themselves to unlock the door. By enforcing these LTLs
through verification techniques, we were able devise the
design presented previously with faith that our model will
behave as intended.

One key concept that our system involves is concurrency.
The Bluetooth integrated into our system is inherently
concurrent since we allow any number of messages and any
number of devices to connect to our system at any time;
however we deal with this in a serial manner.
Unfortunately, there were a number of issues with the
Bluetooth that we had to deal with. First, the Arduino
platform utilizes a limited buffer to process data transmitted
via Bluetooth. Additionally, the serial port wrapper on
Android has issues with receiving rates during reads. To
resolve these issues we limited the speed of sending from
Android such that the Arduino would always be able to read
faster than Android could write.

In addition, we wanted to build a reliable real time system.
Since Bluetooth can disconnect, we had to account for
disconnections from either Android or Arduino. In either
case, we assumed an incomplete message was invalid, and
rejected the user. Upon disconnect, the Android application
would notify the user of disconnection, and require the user
to reconnect. Since our Arduino is always listening for
Bluetooth connections, we simply have the Android device
reconnect and resend the incomplete messages. Due to our
limited number of Android devices, we were not able to
fully stress test this part of the project and the system is
possibly prone to a DoS attack; however, in the case that
Bluetooth is overwhelmed, the system will simply stay in
the locked state because of the timeout feature in the lock.

CONCLUSION
In this project, the majority of the time was spent in our
formal analysis. As we designed and implemented each
component of our machine, hardware limitations and

violated LTLs caused constant redesign. The prime
example is with the Bluetooth proximity explained earlier.
The inconsistent strengths across devices and various power
levels caused a redesign in how we decided to approach
verification. While the final state machine is not very
complex, this system reinforces the importance of formal
verification. Letting the LTLs represent our system
requirements, we were able to use them to guide our design
process and truly create a system that models the intended
behavior.

As an initial prototype, this project does a fairly good job
demonstrating the benefits and negative consequences of a
retaliatory smart lock; however, further steps ought to be
taken. Our system was heavily designed around our
personal use case. The thresholds are not very
representative of a typical door since there was a very
limited amount of testing. Since our servo simply rotated a
fixed degree each time, it may not work on other deadbolts
if those locks require a different amount of rotation and/or a
different torque. A better system would incorporate a
stepper motor to take advantage of its positional control via
fractional increments. Sacrificing the high speed and torque
of a servo for positional accuracy is appropriate as we want
to prevent the lock from breaking, and accurately support a
variety of locks.

REFERENCES
1. Arduino - Reference.
http://arduino.cc/en/Reference/HomePage

2. Ken Shirriff's blog: A Multi-Protocol Infrared Remote
Library for the Arduino.
http://www.righto.com/2009/08/multi-protocol-infrared-
remote-library.html

3. Ken Shirriff’s blog: Detecting an IR Beam Break with
the Arduino IR Library.
http://www.righto.com/2010/03/detecting-ir-beam-break-
with-arduino-ir.html

4. Connecting It Up | Adafruit 9-DOF IMU Breakout |
Adafruit Learning System.
https://learn.adafruit.com/adafruit-9-dof-imu-
breakout/connecting-it-up

5. DC Motor: Actuation Assignment 1.
https://courses.ischool.berkeley.edu/i262/f14/9

6. Servo Motor: Actuation Assignment II.
https://courses.ischool.berkeley.edu/i262/f14/10

7. Using the BlueSMiRF.
https://learn.sparkfun.com/tutorials/using-the-bluesmirf

8. TR-27 GRYPHON - CR-18 Rapidstrike Mod –
NerfHaven.
http://nerfhaven.com/forums/index.php?showtopic=25012

9. [TUTORIAL] How to Modify the Nerf Rapidstrike CS-
18 - Modification Guide.
https://www.youtube.com/watch?v=sphHIFf8-Mc

10. Tutorial: Nerf RapidStrike Modification Tutorial.
https://www.youtube.com/watch?v=C7enXgH357E

