PixelBot: Robot-Generated Light Vector Drawings

UC Berkeley EECS149 Fall 2014 Final Project
John Wilkey, Alec Guertin, Chester Chu

1 Introduction

The goal of the PixelBot project is to design and imple-
ment a robotic system that can take a graphic from user
input and replicate a scaled version of the drawing on a flat
surface. The current implementation accomplishes this
task through the use of a Pololu m3pi (see Figure [I) with
an onboard LED that flashes on and off as the robot moves
to different positions. The user can use a camera with a
long exposure to capture the sequence of flashes and pro-
duce a light drawing. The following sections explore the
modeling, design and analysis of this system.

2 Modeling and Design

2.1 Basic Modeling and Platform

The initial model for our system included 3 main sections:
user input, frame detection and drawing. In the user in-
put stage, the goal was to allow the user to draw a picture
in a computer application. The data from this picture
would then be used as the input to our robotic system. In
the frame detection stage, the system would use sensors
to detect a frame for the drawing as defined by the user.
Finally, in the drawing stage, the system would draw the
input scaled to a size proportional to the detected frame.
Correct behavior of the system would be defined as accu-
rately recreating the user’s drawing in the framed area.
We chose to implement our system using the Pololu m3pi,
a small robot with an Atmel Atmega AVR microcontroller
receiving serial commands from an MBED LPC1768 act-
ing as a high level controller. The m3pi is a small circular
robot, approximately 8.8 cm in diameter, with two wheels
controlled by motors and a caster wheel. The m3pi is also
mounted with an array of five reflective sensors, making it
ideal for an out-of-the-box system for frame detection.
After choosing this platform, we were able to expand our
model to include more detail. In our new model, we devel-
oped a state machine (see Figure E[) to govern the m3pi’s
behavior. This state machine represents the second and
third stages of our three-stage model. We were also able
to make design decisions on how the m3pi would interact
with its sensors and actuators to accomplish these tasks.

2.2 Design Overview

The first step in the process is interpreting user input. We
implemented the user interface for drawing using Turtle
graphics in Python. A portion of the code for this applica-

tion is adapted from http://svn.python.org/projects/
python/trunk/Demo/tkinter/guido/paint.py. This
application allows the user to make basic drawings with
their computer mouse. We then take the PostScript
data from this drawing and load it onto the m3pi. The
PostScript data includes the dimensions of the canvas
and a series of "moveto” and ”lineto” instructions. Each
"moveto” line specifies to draw a line from the current co-
ordinates on the canvas to the new x- and y- coordinates
specified (assuming a grid with the origin at the bottom
left corner of the frame). A ”lineto” instruction specifies
to draw a line from the current coordinates to the new
coordinates. We chose to use PostScript since it offered a
convenient way to represent directions for drawing vectors
with little overhead. For our purposes, we only support
the most basic ”moveto”, ”lineto” and dimensions instruc-
tions.

The m3pi’s first task is to scale the drawing from the di-
mensions of the user drawing to a frame on the drawing
surface. We utilized the m3pi’s onboard reflective sensors
to detect the edge of a frame marked with non-reflective
electrical tape on a reflective surface. We use these sensors
to locate the corners of the frame and measure the distance
between them. From this measurement we can calculate
the necessary scaling factor for the drawing. The m3pi
API provides methods for calibrating the reflective sen-
sors to the tape line and tracking its position relative to
the robot (left or right) as well as controlling the wheel
motors.

After establishing the size and location of the frame, the
m3pi must draw the user’s graphic. In our design, we use
the PostScript instructions to specify the robot’s move-
ments and actions accordingly, following the same move-
ments as the user’s mouse when drawing.

2.3 State Machine and Algorithms

The robot’s behavior is modeled by a state machine that
expands the ideas from the second and third stages of the
basic model above. The states and transitions of this FSM
include:

e LINE_CAL: LINE_.CAL is the initial state for the
robot. Here, we assume that the robot starts on the
line and facing the bottom right corner of the frame.
In this state the robot sets up state variables and cal-
ibrates sensors to the frame’s tape line. This state
should only be reached once at the beginning of the
program and transition to the FIND_CORNER state
under normal conditions. If the robot cannot cali-

http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py
http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py

brate the sensors to find a line, the FSM transitions
to the ERROR state.

FIND_CORNER: This state specifies that the robot
should follow the frame until finding a corner. The
robot drives forward and corrects its movements to
stay over the line. A boolean state variable specifies
whether to search for the bottom left or right corner
of the frame. The robot exits this state after the re-
flective sensors detect the appropriate corner or can
no longer detect the line. The first time this state
is run, the robot looks for the bottom right corner
and the second time looks for the bottom left corner
and measures how long it travels in order to deter-
mine the frame width. This state transitions to the
REV_TURN state after successfully detecting a cor-
ner. The robot transitions to the ERROR state if the
sensors can no longer detect the frame.

REV_TURN: Here, the robot turns 180 degrees, piv-
oting on the frame line to face opposite corner. The
state machine transitions back to FIND_CORNER
if only one frame corner has been found, or
DRAW_INIT if both corners have been found.

DRAW_INIT: In this state, the robot prepares for the
drawing phase of the model. The m3pi reads in the
PostScript file, prepares state variables including the
scaling factor and localizes itself at point (0,0) and
an angle of 0 degrees in the corner of the frame. This
state should only be run once after finding both bot-
tom corners of the frame. This state transitions to
the PARSE state under normal conditions and the
ERROR state if an error is detected when opening
the PostScript instruction file.

PARSE: This state is for interpreting the next instruc-
tion for the robot. In this state, the robot reads in
more data from the file and sets state variables ac-
cording to the next unparsed PostScript instruction.
After parsing, this state transitions into the TURN
state upon reading a valid instruction, the FINISHED
state if there are no more instructions, or the ERROR
state if there is a parsing error.

TURN: At this point the robot calculates the angle
necessary to turn to face the next coordinate speci-
fied in the PARSE state. We can calculate this angle
using the state variables for the robots current coordi-
nates, desired coordinates and net angle turned since
DRAW_INIT (an angle of 0 degrees specifying the vec-
tor parallel to the x-axis). The robot then turns the
remaining angle necessary. This state branches to the
MOVE or DRAW state based on the "moveto” or
”lineto” instruction received from parsing.

MOVE: This state calculates the Euclidean distance
between the m3pi’s current position and its desired

position and then runs the motors to move that dis-
tance. This state should always follow the TURN
state and transition to the PARSE state.

e DRAW: This state operates similarly to the MOVE
state, but also draws as it moves (enables the LED).

e FINISH: In FINISH, the m3pi stops and alerts the
user that it is finished drawing with the onscreen mes-
sage "Done”. This state is only entered when no more
PostScript instructions remain. With proper behav-
ior, the m3pi remains in this state until the user de-
activates the robot.

e ERROR: This state alerts the user that an error oc-
curred by printing a message to the robot’s screen
with the state that the error occurred in. The ER-
ROR state can be reached when another state cannot
properly execute its logic or detects an inability to
follow correct defined behavior. Some examples of
situations that lead to this state include: an inability
to detect the tape line in the FIND_CORNER state,
a parsing error in the PARSE state or encountering a
bad file descriptor in the DRAW_INIT state.

Our final implementation of the code for this system is
designed using this state machine logic. The algorithm
runs a while loop that in each iteration executes the logic
for the current state and then updates the state based
on state variables. For more details, please see the code
repository in the ”Resource Links” section.

3 Error and Analysis

3.1 Physical vs. Model

There are several sources of error with the physical robot
that causes its behavior to deviate from that of our model.
‘We therefore must calibrate the robot to account for its in-
herent inaccuracies and biases. The functions that control
the robot’s movements can be treated as an affine model
where we compensate for movement biases by calibrating
the robot along a series of known paths and correct for
these biases. Moreover, we can measure the sensitivity
factor empirically to determine what factors to multiply
our input angle by in our turn commands to convert the
m3pi’s turn API calls into turns by angle and calls to our
forward() and backward() functions into measures of dis-
tance, something not available in the m3pi API. To that
end, we determined the sensitivity metric as our first cal-
ibration, using a square box and repeatedly circling it,
the intent being to both calibrate for consistent 90 de-
gree turns and to gain an understanding of the rate at
which buildup error would become problematic. In order
to properly calibrate this model, however, we had to first
identify the error and then instrument that error.

3.2 Motor Precision and Weight Distribu-
tion

A principle source of error in our robot, as we came to
realize, was the robot’s reliance on reliable realtime be-
havior to control its motions. Specifically, the m3pi APIs
motor control functions are predicated on being able to
precisely control the duration of the motor’s spinning. It
was found, however, that there are inherent inconsisten-
cies in our chosen platform with regard to these functions
that likely stem from inconsistencies in timing from one
moment to the next on the RTOS running on the MBED.

One major source of error in our physical implementa-
tion was inaccuracy caused by motor control and weight
distribution. We witnessed slight discrepancies between
the robot’s movements and the intended behavior as spec-
ified by our model. The robot’s turn angles were often
inaccurate and the m3pi drifted to the right when driving
forward. These two inconsistencies, resulted in problems
with build-up error. After several instructions, the small
error produced with each movement would compound, and
the robot would end up a significant distance away from
its intended location.

We discovered that one source of right bias in straight
driving was the uneven distribution of the robot’s weight.
The mbed controller, which is offset toward the right side
of the robot, was enough to throw off the weight of the
robot and cause it to veer slightly right when it should
have been driving straight. How such a small difference
in weight could cause a noticeable bias was something
that was unfortunately unexpected. While we were able to
compensate for it by introducing a reverse correcting an-
gle at periodic intervals, it was a less-than-ideal solution as
our model had not considered that tracking straight would
not actually go straight.

Next, the precision and consistency of the robot’s mo-
tors provided another difficulty. We found that the m3pi
often did not turn the full angle specified. What’s more,
the degree to which it deviated from its intended angle
differed inconsistently with the specific angle it was asked
to turn. This made the affine model of inaccuracy more
difficult to apply since there was no longer a constant bias
term but one that was itself a function of the input.

To mitigate these concerns, we modeled the error by
measuring the error in our instructions and calibrating our
robot to counteract it. We instructed the robot to turn
45, 90 and 180 degrees and measured the angles across
multiple trials. We then calculated average deviation be-
tween the m3pi’s intended turn angle and the actual angle
turned. From these results, we could see that much of
the error in turning was from a bias that was consistent
between the trials for all three angles. We used this cal-
ibration to correct the turn instruction in our code and
make the angles more accurate. The results of our trials
can be found in the graphs in Figure Figure Figure
[Depending on the angle, we add a small correcting fac-
tor to counteract the bias term while leaving the sensitivity
term unchanged.

Next, we decided to rectify the issues with forward mo-
tion introduced by the robot’s uneven weight distribution.
We positioned the robot on a grid and instructed it to
drive straight for a specified distance. Using the average
distance it deviated from a straight line, the trial data of
which can be found in Figure [5]and Figure [6] we modified
the forward function to correct for this movement bias by
overdriving the right wheel and inducing a compensating
turn at 1 second intervals. The values for these compen-
sations was determined empirically.

Finally, the above tests were performed on two candi-
date surfaces: paper and linoleum tiles. We noted that the
tile surface consistently performed better in both absolute
accuracy and test/retest consistency. This led to us opting
to use tile as our surface.

3.3 Rocking and Sliding

Another major source of error that was realized was slip-
page caused by abrupt changes in velocity and/or direc-
tion. When attempting to drive short distances or make
sudden stops, the robot would often rock forward, causing
its wheels to noticeably slip. Through empirical measure-
ments, it was determined that the robot could not repro-
duce arcs in succession whose endpoints were within 20
‘pixels’ of each other. To this end, we employed a smooth-
ing filter on our coordinate generating program to filter
these jagged lines into a smoother shape. The smooth-
ing algorithm looks at the input instructions and exam-
ines points associated with draw instructions in groups of
three. The algorithm will calculate the length of the line
between point 1 and 2, and then the length of the line
between 2 and 3. Then, based on the length of these lines
and the angle between them, the algorithm will determine
whether to replace the two lines with a single line between
points 1 and 3. The net result of this smoothing is less
jerking motion which translates to less wheel slippage and
allows the robot to maintain a more accurate sense of ori-
entation. This, unfortunately reduces overall resolution in
the drawing, but greatly improved the robot’s accuracy
and so was deemed a reasonable tradeoff.

3.4 Mitigations That Didn’t Work

There were a number of mitigation techniques we em-
ployed that failed to reduce the robot’s inaccuracy. We ini-
tially tried to compensate for the forward drift by adding
ballast to balance the robot’s weight distribution. This,
however, proved less effective as we learned that the addi-
tional weight—while having addressed the drift—led to less
consistency between trials. This, also, led us to realize
that the additional weight and actuating force generated
by the solenoid—as our original design had called for—would
induce too much inaccuracy in the robot’s movements to
produce meaningful results, and was primary reason for us
abandoning that idea. Next, we attempted to deal with
compounding buildup error by having the robot relocalize
to the origin after each line segment. This, also, proved

ineffective and led to worse results overall. It was found
that the movements needed to return to the origin and
back were themselves a source of error that served to only
make the drawings worse.

4 Final Results and Next Steps

We were able to produce several images with reasonable
accuracy. For examples of images drawn by the robot, see
Figures [7] and [§] Unfortunately, despite our added miti-
gations to the errors we found, the robot still shows some
build-up error. As a result the robot is limited in the com-
plexity of the drawings that it can reproduce. However,
we have explored modifications to our design that may im-
prove the robot’s accuracy and the overall user experience.

A principle problem we encountered during development
and one that we were unable to completely mitigate was
the problem of buildup error and motor inconsistencies.
Specifically, we were never able to address the occasional
turn that would end up completely inaccurate, nor were
we able to compensate entirely for surface irregularities
and voltage and temperature changes in the robot. In
the end, it became clear that this project would benefit
tremendously from a way to allow the robot to receive
constant feedback of its absolute position from known fixed
points. To that end, we believe the most prudent next step
in this project would be implementing a form of closed loop
control, such as infrared guidance beacons similar to what
was demonstrated in one of the first lectures of this class
with the flying robots. It has become clear to us that
without a way of being able to update the robot of its
position, relying on the robot’s motor motions exclusively
will never be accurate enough to avoid build up error.

Next, for this project, we initially wished to create a
robot that could draw images using a pen controlled by a
solenoid. However, after discovering the great effect that
changes in weight had on accuracy, we decided to eliminate
the mechanical component and have the robot draw using
an LED. We would hope to spend more time calibrating
our system to work with physical drawings. However, due
to the limitations of the hardware, this will most likely
require building on another robot platform.

We also have the future goal of making the robot in-
teract with the user in real time. The user drawing ap-
plication could update the robot via WiFi/bluetooth with
new instructions as the user continues to draw. In this
case, we could add a STANDBY state to our state ma-
chine. The robot would return from this state to the
PARSE state upon receiving new input and continue draw-
ing rather than going to the FINISH state. When coupled
with adding the solenoid, a user could use the robot to
play a game of tic-tac-toe with chalk on the sidewalk or
draw a picture in stages.

5 Conclusion

This project afforded us an opportunity to apply our un-
derstanding of modeling a system with finite state ma-
chines and translating that model into a physical system.
This project proved quite rewarding despite a number of
obstacles we faced in our implementation related to the
inherent differences between the physical system and our
model. Paramount in these obstacles was our need for
precision control of the robot which required an ability to
precisely control timing of the system and account for noise
from both the environment and the robot itself. To this
end, we turned to modeling noise by first identifying where
noise was manifesting itself then measuring it and calibrat-
ing our robot’s motions to counteract it. In this way, our
initial design used a modal FSM model that controls the
high-level logic of our project while the more detailed cal-
ibrations and other nuances induced by the physical sys-
tem were modeled as an affine model using empirically-
determined values and compensating for inaccuracies and
biases. Taken together, this technique allowed us use a
rather inaccurate and inconsistent robot to make relatively
precision patterns. Nevertheless, the inconsistencies that
remained in the final project allowed us to appreciate the
difficulties in reliable realtime behavior as a large portion
of the innacuracies that remain are almost surely timing
related as the m3pi’s API is largely dependent on timing.
If expanded to include a form of closed-loop guidance from
a fixed frame of reference as alluded to in our ”Next Steps”
section, the resulting drawings can undoubtedly be made
far more accurate.

6 Resource Links

m3pi Line Follower Starter Code:
http://developer.mbed.org/cookbook/
m3pi-LineFollowing

Python Drawing Program Starter Code:
http://svn.python.org/projects/python/trunk/
Demo/tkinter/guido/paint.py

m3pi APL:
http://developer.mbed.org/cookbook/m3pi

Code Repositories:
https://bitbucket.org/eeld9tabot/final-project
https://developer.mbed.org/teams/EE149/code/
FinalProject/

Video Demo:
https://www.youtube.com/watch?v=A5haKARs_QE&
feature=youtu.be

7 Appendix

Figures and graphs referenced in earlier sections.

http://developer.mbed.org/cookbook/m3pi-LineFollowing
http://developer.mbed.org/cookbook/m3pi-LineFollowing
http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py
http://svn.python.org/projects/python/trunk/Demo/tkinter/guido/paint.py
http://developer.mbed.org/cookbook/m3pi
https://bitbucket.org/ee149tabot/final-project
https://developer.mbed.org/teams/EE149/code/FinalProject/
https://developer.mbed.org/teams/EE149/code/FinalProject/
https://www.youtube.com/watch?v=A5haKARs_QE&feature=youtu.be
https://www.youtube.com/watch?v=A5haKARs_QE&feature=youtu.be

Figure 4: 45 Degree Error

Figure 1: Hardware: m3pi & MBED LPC1768 45 Degree Error by Surface
)
I N e e
8
£
@
8l
&
‘ Tile
Mean: -2.15
Paper
Mean: -2.95
T T T T T T T
-6 -5 -4 -3 -2 -1 0
Angle Error from 45 Degrees (degrees)
Figure 2: 180 Degree Error
180 Degree Error by Surface
Figure 5: 1 Second Drive Error
Drive Error by Surface for 1 Second
o
24
gl |
@
8
5 S
e
Tile
Mean: -2.35 N
Paper [I Y e (
Mean: -3.7 &
T T T T T T
-8 -7 -6 -5 -4 -3 -2 -1 Tile
Mean: 12.65
Angle Error from 180 Degrees (degrees) Paper
Mean: 9.7
T T T
10 15 20
Deviation from Center (mm)
Figure 3: 90 Degree Error
90 Degree Error by Surface Figure 6: 3 Second Drive Error
Drive Error by Surface for 3 Seconds
Tile
Mean: -2.175
Paper
Mean: -3.75
o
N e
@
8
g o
@ g | | E
@
gl
&
Tile
Mean: 40.25
T T T T T T T Paper
Mean: NaN
-6 -5 -4 -3 -2 -1 0 T T T T T

Angle Error from 90 Degrees (degrees) 30 40 50 60 70

Deviation from Center (mm)

Figure 7: Demo: ’Cal’ logo light drawing

Figure 8: Demo: Smiley face

Figure 9: FSM Model of Physical System

ERROR

LINE_CAL DRAW_INIT

FIND_
CORNER REV_TURN

Figure 10: Calibration Model

A

. Frame
y-axis
- —_—
x-axis
FINISH
PARSE
TURN

MOVE DRAW

	Introduction
	Modeling and Design
	Basic Modeling and Platform
	Design Overview
	State Machine and Algorithms

	Error and Analysis
	Physical vs. Model
	Motor Precision and Weight Distribution
	Rocking and Sliding
	Mitigations That Didn't Work

	Final Results and Next Steps
	Conclusion
	Resource Links
	Appendix

