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1.  Overview 
The goal of this project is to create a physical 

interactive jousting game using two competitive 
holonomic robots. Each robot consists of a basic two-
wheeled platform equipped with a joust and a hitbox 
sensor region (a shield) that will register loss of life points 
when hit. Through a robot-computer interface, vehicles 
can be controlled either by a user via a Nintendo Wii 
Remote or by an AI algorithm. Certain regions of the 
game field contain an embedded magnet to signify power-
ups that can be recognized by the robots. The first robot to 
reach zero life points loses the game. 

2.  System Modules 
There are three major modules to our project: the robot 

vehicles/interface, the computer vision system, and the AI 
algorithm. The computer vision module utilizes a camera 
positioned directly above the game field to capture images 
of the entire field, tracks the robots on the field, and 
makes their positions and orientations available via an 
interface. The AI module consumes this information as 
well as the game status to maintain an internal 
representation of the game state and employs a set of rules 
or algorithms to send commands to the autonomous robot 
through the robot-computer interface. See Figure 1 for the 
flowchart diagram of our system and Figure 2 for the 
image of our physical setup. The robot-computer interface 
handled translating commands into actuation for both the 
autonomous and user-controlled robots. 

 

2.1. Robot Vehicles and Interface 

We designed and constructed two robots that properly 
implemented the planned game mechanics and conformed 
to the interface requirements we had set when developing 
the project. 

 
 

1) Game Mechanics 
Concerning the game mechanics, both robots require a 

joust, a hitbox sensor, and a power-up sensor. 
Implementation of the joust was trivial, and thus design 
focused on modeling and implementing the hitbox and 
power-up sensors. The basic robot setup is shown in 
Figure 3. Our implementation employs a push-button to 
model the hitbox and a hall sensor to model the power-up 

sensor. An RGB LED is used to indicate the life points 
(maximum 3) with colors ranging from white through blue 
to dim blue/off to indicate decreasing life points. A 
second, red LED is used to indicate that a robot has been 
hit or has collected a power-up, as visual indication of a 
constraint we designed for the game: the robot is 
invulnerable for a short period after it has been hit or after 
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Figure 1: Flowchart diagram of system  

Figure 2: Physical setup 

Figure 3: Robot setup
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it picks up an invulnerability power-up. For particular 
invulnerability times, we used two seconds for after each 
hit, and three seconds for invulnerability power-ups. The 
timed automaton modeling this behavior is shown in 
Figure 4. 

We analyzed the correctness of this model by ensuring 
that the following two LTL constraints are satisfied: 
G(Hit=>X(Play)) 
G(PwrUP=>X(Play)) 
It is easy to see that since no transitions occur between 

Hit and PwrUP, and the automaton will not stutter, the 
above constraints are satisfied. Note that the transitions 
out of Play are preemptive and are therefore implemented 
as interrupts on the microcontrollers we used. Also note 
that the two-second delay after each hit registers provides 
a solution for hardware debouncing of the push button. 
2) Interfaces 

Our setup requires the robots to have a communication 
interface with a computer for user and AI control. 
Wireless serial communication was achieved using a pair 
of XBee modules for the autonomous robot, and a pair of 
HC05 Bluetooth modules for the user-controlled robot. 
Our original plan was to have a Nintendo Wii Remote 
connect directly to the user-controlled robot, but we 
discovered that the HC05 module only supports Bluetooth 
SSP for connection and does not work with the HID 
interface the Wii Remote uses. Had we known this earlier 
in the design process, we would have modified our design 
to use three XBee modules in a mesh network so that all 
agents in our system could have information about the 
other agents. Instead, we connected the user-controlled 
robot to a computer using the HC05 Bluetooth module, 
then connected a Wii Remote to the computer using a 
separate, HID-supported Bluetooth module (this created a 
serial connection). We had initially tested user input using 
keyboard inputs to send commands to the user-controlled 
robot, so we used the free software "GlovePIE" to map 
Wii Remote inputs to keyboard presses such that a user 
could opt to use either method of input. We implemented 
several control schemes (tilt-to-turn or button-to-turn) for 
the Wii Remote-keyboard mapping. 
 

3) Hardware 
We used the following hardware for our 

implementations: 
 User-controlled robot: 
o CZ-HC-05 gomcu Bluetooth boards 
o PL2303HX USB to TTL to UART converter 
o FRDM KL25Z mBed 
o Radio Shack AA batteries 

 AI-controlled robot: 
o XBee Series 1 radio by DigiKey 
o Sparkfun XBee Explorer USB 
o Arduino Uno microcontroller 
o Tenergy 7.4V 2200mAh Li-Ion Battery 

 Shared hardware: 
o Pololu DRV8833 Dual Motor Driver Carrier 
o Pololu Adjustable Step-up/Step-down Voltage 

regulator S7V8A 
o Sunkhee Hall Effect Sensor 
o Motors and Chassis from Emgreat Motor Robot Kit 

We consciously chose to use different hardware for the 
AI and user robots in order to explore the usage of the 
mBed microcontrollers and Bluetooth communication in 
comparison to Arduino and XBee. Batteries were used 
based on availability. See Figures 5 and 6 for our robot 
hardware. 
4) Pitfalls and Future Improvement 

The greatest issue we faced in implementation came 
from the magnetic field produced by the DC motors, 
which rendered the Hall Effect sensor infeasible to use for 
power-up sensing. For future improvement, we could 
replace these sensors with color sensors and change our 
power-up indicators to use colored markers instead of 
magnets. In addition, in the interest of symmetry, it may 
be better to use the same hardware on both robots to 
facilitate adding new features to gameplay (e.g. additional 
players). 

Figure 5: Robot skeletons. Left: User, Right: AI 

Figure 6: Final robots with markers and shields Figure 4: Timed automaton modeling invulnerability behavior
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2.2. Computer Vision System 

The purpose of our vision module was to provide the 
AI robot with a way to determine the location and 
orientation of all robots on the game field. To achieve this, 
we mounted a Phillips webcam above the game field and 
attached it to a computer. Simple black shapes (see Figure 
7) were pasted on top of each robot, and a Python program 
running on the computer read the webcam data and 
determined the location of each shape. This was achieved 
using the free OpenCV library for Python (developed by 
Intel Russia and maintained by Willow Garage and 
Itseez). The vision algorithm initially took both the 
triangle and trapezoid shapes as template inputs and 
determined the contours and 'base' orientations of these 
templates. It then repeatedly read frames from the 
webcam. For each frame, it would convert to grayscale 
and then threshold the image to create a black and white 
image. On this black and white image, OpenCV functions 
were used to detect contours in the image. After 
discarding any contours that contained other contours or 
were underneath a set area threshold, the OpenCV 
matchShapes function was used to determine which 
contours in the image most closely matched the templates. 
The location of each shape was saved as the centroid of 
the best-matched contour for each template, and the 
orientation of the tracked shape was determined by 
finding the orientation of the contour in the image and 
subtracting the 'base' orientation of the template, modulo 
360 degrees. Contour orientation (for both templates and 
matches) was determined by finding the orientation of the 
vector from the centroid to the center of the minimal 
enclosing circle for the contour. All this functionality was 
encapsulated in a "ShapeTracker" class, which other 
modules, notably the AI module, could instantiate with 
arbitrary template images to process webcam images. An 
interface for defining templates and then retrieving the 
detected locations and orientations of those templates was 
established for this class, as well as a method for 
requesting that another image from the webcam be 
processed. Figure 8 depicts a visualization of the vision 
module's capabilities, with faint blue circles showing the 
retrieved locations and orientations of each template 
shape. 

The initial design called for orientation to be retrieved 
using the moments of each contour (a set of descriptors). 
However, we found that the moments could only be used 
to retrieve an axis of orientation for each contour (-90 to 
90 degrees), rather than a unique orientation out of 360 
degrees. We therefore modified our design to use the 
previously described method for extracting orientation. 
This issue, as well as an issue with contour hierarchies 
(solved by discarding contours that contained other 
contours) and a minor lighting-based issue, were the only 
issues that arose during development of this module. 
However, the module may still output 'false positives', 
where shapes in the images are falsely detected as matches 
for template shapes. The module has a modifiable 
threshold that can be tuned to increase or decrease the 
leniency involved in matching shapes. 

2.3. AI Algorithm 

We designed our AI robot to follow a greedy algorithm 
to produce an aggressive opponent using the following 
requirements: 
 Active Pursuit: AI robot pursues the user robot if it is 

not directly in front of the user robot 
 Reorientation to Attack: If the AI robot finds itself in 

front of the user robot, it reorients itself to point joust 
towards the hitbox on the user robot 

 Boundary Avoidance: If the AI robot is near the 
boundaries set by the vision module, it attempts to 
move away from the boundary by backing up and 
turning 180 degrees, then moving forward away from 
the boundary. Relative directions for the robot are as 
shown in Figure 9. 

We implemented our algorithm as a state machine 
coded in Python (see Figure 10 for the state machine 
diagram). 

 
 
 Figure 7: Templates used by AI module for Vision module 

initialization   

Figure 8: Visualization of vision module capabilities  
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Specific features of our state machine include: 
 7 states describing AI robot behavior 
o STOP - not moving (initial state) 
o FWRD - moving forward at set speed 
o LEFT - rotating counterclockwise in place at set 

angular velocity 
o RIGHT - rotation clockwise in place at set angular 

velocity 
o ADJST - AI robot is in front of the user robot and 

must start to aim at the hitbox 
o ADJ_L - rotation counterclockwise to aim at hitbox 
o ADJ_R - rotation clockwise to aim at hitbox 

 
 
 
 
 

 
 
 Inputs: 
o Vector orientations from both robots (0 to 359 

discrete degrees), obtained from vision module (θAI 
and θUSER in Figure 10) 

o Relative angles of orientation of each robot to the 
other (0 to 359 degrees), calculated from position 
and orientation information (ΦAI and ΦUSER in 
Figure 10, describing angle of AI compared to user 
and user compared to AI, respectively) 

o Distance (D) between the two robots as a positive 
real number in unit pixels, calculated from position 
information 

 Output: the next move for the AI robot to take, with 
four directions being the available values; this is later 
translated to commands sent to the robot 

We also assign variable names to the evaluations of our 
guards: 
 isFwd: ΦAI ≤ 30 or ΦAI ≥ 330 
 isLeft: 180 < ΦAI < 330 
 isRight: 30 < ΦAI < 180 
 inHitRange: (ΦUSER ≤ 30 or ΦUSER ≥ 330) and D ≤ 25 
 orientMatch: -15 ≤ |ΦAI - ΦUSER| - 180 ≤ 15 (checks 

if AI is pointing towards scoring region of user) 
 isHit: orientMatch and D ≤ 10 
Please refer to Figure 10 for each state's update 

function. 
 

Figure 10: AI robot state machine

Figure 9: Directions as referred to in description of algorithm
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Simulation test results of our AI algorithm proved to 
work satisfactorily and exhibited acceptable behavior. 
However, after integrating the AI module into our overall 
system, we found that our AI implementation suffered 
from latency issues. In particular, the time the AI needed 
to obtain the vision data, compute the next move, and then 
send the command over the XBee serial connection was a 
much longer duration than the acceptable response time 
range of our robot. Ultimately, this resulted in our AI 
having delayed reactions and causing it to exhibit 
suboptimal behavior. We tried to account for such delays 
by modifying the AI implementation to run faster and 
implementing a buffer to speed up the data exchange from 
the vision module to the AI module. This did reduce the 
amount of lag, and the AI behavior improved as a result. 

Another issue that arose with the module involved the 
dependence on information from the vision module. In 
environments where the lighting conditions are dim, 
flooring is uneven, or there are noisy 'false positive' 
shapes, the vision module may experience performance 
issues when the AI module repeatedly polls it, or shapes 
may flicker in and out of view. Correcting the lighting 
conditions or other environmental conditions helped 
account for some of these issues. However, if shapes are 
not detected in any images, then the AI module does not 
perform any updates, as it cannot obtain any new input 
data from the vision module. Incorrectly identifying 
shapes results in the AI outputting incorrect moves, as 
expected. As such, potential factors that affect the proper 
function of the vision module also affect the AI behavior. 
However, we improved the AI module to be more robust 
to these issues, such as with a median filter for orientation 
tracking. 

Overall, the AI algorithm as a standalone module works 
in theory and simulation, and we managed to improve the 
AI module such that any limitations it has do not impair 
its intended behavior. 

3. Conclusion 
Our modules fit together fairly well, and we even 

managed to improve our AI robot behavior to the point 
that the previous issues disappeared (as in our project 
video), but during the live demonstration, the relevant 
environmental conditions were not reproducible, though 
the AI robot still made for an entertaining opponent. 
While there are some Python-specific issues with our 
programs, we are satisfied with the result, since our goal 
was to make something fun to interact with using the 
concepts discussed. We have mentioned possible future 
directions for this project, such as the addition of more 
players or more game complexity, so there are certainly 
interesting extensions to consider. Overall, we gained a 
better understanding of the process of embedded system 
design (such as consideration of environmental factors), 

and were able to create an enjoyable experience. 
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