

1

1. Overview
The goal of this project is to create a physical

interactive jousting game using two competitive
holonomic robots. Each robot consists of a basic two-
wheeled platform equipped with a joust and a hitbox
sensor region (a shield) that will register loss of life points
when hit. Through a robot-computer interface, vehicles
can be controlled either by a user via a Nintendo Wii
Remote or by an AI algorithm. Certain regions of the
game field contain an embedded magnet to signify power-
ups that can be recognized by the robots. The first robot to
reach zero life points loses the game.

2. System Modules
There are three major modules to our project: the robot

vehicles/interface, the computer vision system, and the AI
algorithm. The computer vision module utilizes a camera
positioned directly above the game field to capture images
of the entire field, tracks the robots on the field, and
makes their positions and orientations available via an
interface. The AI module consumes this information as
well as the game status to maintain an internal
representation of the game state and employs a set of rules
or algorithms to send commands to the autonomous robot
through the robot-computer interface. See Figure 1 for the
flowchart diagram of our system and Figure 2 for the
image of our physical setup. The robot-computer interface
handled translating commands into actuation for both the
autonomous and user-controlled robots.

2.1. Robot Vehicles and Interface

We designed and constructed two robots that properly
implemented the planned game mechanics and conformed
to the interface requirements we had set when developing
the project.

1) Game Mechanics
Concerning the game mechanics, both robots require a

joust, a hitbox sensor, and a power-up sensor.
Implementation of the joust was trivial, and thus design
focused on modeling and implementing the hitbox and
power-up sensors. The basic robot setup is shown in
Figure 3. Our implementation employs a push-button to
model the hitbox and a hall sensor to model the power-up

sensor. An RGB LED is used to indicate the life points
(maximum 3) with colors ranging from white through blue
to dim blue/off to indicate decreasing life points. A
second, red LED is used to indicate that a robot has been
hit or has collected a power-up, as visual indication of a
constraint we designed for the game: the robot is
invulnerable for a short period after it has been hit or after

Robot Jousting: Final Report

Alexander Cruz, En Lei, Sunil Srinivasan, Darrel Weng

Figure 1: Flowchart diagram of system

Figure 2: Physical setup

Figure 3: Robot setup

2

it picks up an invulnerability power-up. For particular
invulnerability times, we used two seconds for after each
hit, and three seconds for invulnerability power-ups. The
timed automaton modeling this behavior is shown in
Figure 4.

We analyzed the correctness of this model by ensuring
that the following two LTL constraints are satisfied:
G(Hit=>X(Play))
G(PwrUP=>X(Play))
It is easy to see that since no transitions occur between

Hit and PwrUP, and the automaton will not stutter, the
above constraints are satisfied. Note that the transitions
out of Play are preemptive and are therefore implemented
as interrupts on the microcontrollers we used. Also note
that the two-second delay after each hit registers provides
a solution for hardware debouncing of the push button.
2) Interfaces

Our setup requires the robots to have a communication
interface with a computer for user and AI control.
Wireless serial communication was achieved using a pair
of XBee modules for the autonomous robot, and a pair of
HC05 Bluetooth modules for the user-controlled robot.
Our original plan was to have a Nintendo Wii Remote
connect directly to the user-controlled robot, but we
discovered that the HC05 module only supports Bluetooth
SSP for connection and does not work with the HID
interface the Wii Remote uses. Had we known this earlier
in the design process, we would have modified our design
to use three XBee modules in a mesh network so that all
agents in our system could have information about the
other agents. Instead, we connected the user-controlled
robot to a computer using the HC05 Bluetooth module,
then connected a Wii Remote to the computer using a
separate, HID-supported Bluetooth module (this created a
serial connection). We had initially tested user input using
keyboard inputs to send commands to the user-controlled
robot, so we used the free software "GlovePIE" to map
Wii Remote inputs to keyboard presses such that a user
could opt to use either method of input. We implemented
several control schemes (tilt-to-turn or button-to-turn) for
the Wii Remote-keyboard mapping.

3) Hardware
We used the following hardware for our

implementations:
 User-controlled robot:
o CZ-HC-05 gomcu Bluetooth boards
o PL2303HX USB to TTL to UART converter
o FRDM KL25Z mBed
o Radio Shack AA batteries

 AI-controlled robot:
o XBee Series 1 radio by DigiKey
o Sparkfun XBee Explorer USB
o Arduino Uno microcontroller
o Tenergy 7.4V 2200mAh Li-Ion Battery

 Shared hardware:
o Pololu DRV8833 Dual Motor Driver Carrier
o Pololu Adjustable Step-up/Step-down Voltage

regulator S7V8A
o Sunkhee Hall Effect Sensor
o Motors and Chassis from Emgreat Motor Robot Kit

We consciously chose to use different hardware for the
AI and user robots in order to explore the usage of the
mBed microcontrollers and Bluetooth communication in
comparison to Arduino and XBee. Batteries were used
based on availability. See Figures 5 and 6 for our robot
hardware.
4) Pitfalls and Future Improvement

The greatest issue we faced in implementation came
from the magnetic field produced by the DC motors,
which rendered the Hall Effect sensor infeasible to use for
power-up sensing. For future improvement, we could
replace these sensors with color sensors and change our
power-up indicators to use colored markers instead of
magnets. In addition, in the interest of symmetry, it may
be better to use the same hardware on both robots to
facilitate adding new features to gameplay (e.g. additional
players).

Figure 5: Robot skeletons. Left: User, Right: AI

Figure 6: Final robots with markers and shields Figure 4: Timed automaton modeling invulnerability behavior

3

2.2. Computer Vision System

The purpose of our vision module was to provide the
AI robot with a way to determine the location and
orientation of all robots on the game field. To achieve this,
we mounted a Phillips webcam above the game field and
attached it to a computer. Simple black shapes (see Figure
7) were pasted on top of each robot, and a Python program
running on the computer read the webcam data and
determined the location of each shape. This was achieved
using the free OpenCV library for Python (developed by
Intel Russia and maintained by Willow Garage and
Itseez). The vision algorithm initially took both the
triangle and trapezoid shapes as template inputs and
determined the contours and 'base' orientations of these
templates. It then repeatedly read frames from the
webcam. For each frame, it would convert to grayscale
and then threshold the image to create a black and white
image. On this black and white image, OpenCV functions
were used to detect contours in the image. After
discarding any contours that contained other contours or
were underneath a set area threshold, the OpenCV
matchShapes function was used to determine which
contours in the image most closely matched the templates.
The location of each shape was saved as the centroid of
the best-matched contour for each template, and the
orientation of the tracked shape was determined by
finding the orientation of the contour in the image and
subtracting the 'base' orientation of the template, modulo
360 degrees. Contour orientation (for both templates and
matches) was determined by finding the orientation of the
vector from the centroid to the center of the minimal
enclosing circle for the contour. All this functionality was
encapsulated in a "ShapeTracker" class, which other
modules, notably the AI module, could instantiate with
arbitrary template images to process webcam images. An
interface for defining templates and then retrieving the
detected locations and orientations of those templates was
established for this class, as well as a method for
requesting that another image from the webcam be
processed. Figure 8 depicts a visualization of the vision
module's capabilities, with faint blue circles showing the
retrieved locations and orientations of each template
shape.

The initial design called for orientation to be retrieved
using the moments of each contour (a set of descriptors).
However, we found that the moments could only be used
to retrieve an axis of orientation for each contour (-90 to
90 degrees), rather than a unique orientation out of 360
degrees. We therefore modified our design to use the
previously described method for extracting orientation.
This issue, as well as an issue with contour hierarchies
(solved by discarding contours that contained other
contours) and a minor lighting-based issue, were the only
issues that arose during development of this module.
However, the module may still output 'false positives',
where shapes in the images are falsely detected as matches
for template shapes. The module has a modifiable
threshold that can be tuned to increase or decrease the
leniency involved in matching shapes.

2.3. AI Algorithm

We designed our AI robot to follow a greedy algorithm
to produce an aggressive opponent using the following
requirements:
 Active Pursuit: AI robot pursues the user robot if it is

not directly in front of the user robot
 Reorientation to Attack: If the AI robot finds itself in

front of the user robot, it reorients itself to point joust
towards the hitbox on the user robot

 Boundary Avoidance: If the AI robot is near the
boundaries set by the vision module, it attempts to
move away from the boundary by backing up and
turning 180 degrees, then moving forward away from
the boundary. Relative directions for the robot are as
shown in Figure 9.

We implemented our algorithm as a state machine
coded in Python (see Figure 10 for the state machine
diagram).

 Figure 7: Templates used by AI module for Vision module

initialization

Figure 8: Visualization of vision module capabilities

4

Specific features of our state machine include:
 7 states describing AI robot behavior
o STOP - not moving (initial state)
o FWRD - moving forward at set speed
o LEFT - rotating counterclockwise in place at set

angular velocity
o RIGHT - rotation clockwise in place at set angular

velocity
o ADJST - AI robot is in front of the user robot and

must start to aim at the hitbox
o ADJ_L - rotation counterclockwise to aim at hitbox
o ADJ_R - rotation clockwise to aim at hitbox

 Inputs:
o Vector orientations from both robots (0 to 359

discrete degrees), obtained from vision module (θAI
and θUSER in Figure 10)

o Relative angles of orientation of each robot to the
other (0 to 359 degrees), calculated from position
and orientation information (ΦAI and ΦUSER in
Figure 10, describing angle of AI compared to user
and user compared to AI, respectively)

o Distance (D) between the two robots as a positive
real number in unit pixels, calculated from position
information

 Output: the next move for the AI robot to take, with
four directions being the available values; this is later
translated to commands sent to the robot

We also assign variable names to the evaluations of our
guards:
 isFwd: ΦAI ≤ 30 or ΦAI ≥ 330
 isLeft: 180 < ΦAI < 330
 isRight: 30 < ΦAI < 180
 inHitRange: (ΦUSER ≤ 30 or ΦUSER ≥ 330) and D ≤ 25
 orientMatch: -15 ≤ |ΦAI - ΦUSER| - 180 ≤ 15 (checks

if AI is pointing towards scoring region of user)
 isHit: orientMatch and D ≤ 10
Please refer to Figure 10 for each state's update

function.

Figure 10: AI robot state machine

Figure 9: Directions as referred to in description of algorithm

5

Simulation test results of our AI algorithm proved to
work satisfactorily and exhibited acceptable behavior.
However, after integrating the AI module into our overall
system, we found that our AI implementation suffered
from latency issues. In particular, the time the AI needed
to obtain the vision data, compute the next move, and then
send the command over the XBee serial connection was a
much longer duration than the acceptable response time
range of our robot. Ultimately, this resulted in our AI
having delayed reactions and causing it to exhibit
suboptimal behavior. We tried to account for such delays
by modifying the AI implementation to run faster and
implementing a buffer to speed up the data exchange from
the vision module to the AI module. This did reduce the
amount of lag, and the AI behavior improved as a result.

Another issue that arose with the module involved the
dependence on information from the vision module. In
environments where the lighting conditions are dim,
flooring is uneven, or there are noisy 'false positive'
shapes, the vision module may experience performance
issues when the AI module repeatedly polls it, or shapes
may flicker in and out of view. Correcting the lighting
conditions or other environmental conditions helped
account for some of these issues. However, if shapes are
not detected in any images, then the AI module does not
perform any updates, as it cannot obtain any new input
data from the vision module. Incorrectly identifying
shapes results in the AI outputting incorrect moves, as
expected. As such, potential factors that affect the proper
function of the vision module also affect the AI behavior.
However, we improved the AI module to be more robust
to these issues, such as with a median filter for orientation
tracking.

Overall, the AI algorithm as a standalone module works
in theory and simulation, and we managed to improve the
AI module such that any limitations it has do not impair
its intended behavior.

3. Conclusion
Our modules fit together fairly well, and we even

managed to improve our AI robot behavior to the point
that the previous issues disappeared (as in our project
video), but during the live demonstration, the relevant
environmental conditions were not reproducible, though
the AI robot still made for an entertaining opponent.
While there are some Python-specific issues with our
programs, we are satisfied with the result, since our goal
was to make something fun to interact with using the
concepts discussed. We have mentioned possible future
directions for this project, such as the addition of more
players or more game complexity, so there are certainly
interesting extensions to consider. Overall, we gained a
better understanding of the process of embedded system
design (such as consideration of environmental factors),

and were able to create an enjoyable experience.

References
 Anaconda by Continuum Analytics: Python, NumPy.

http://store.continuum.io/cshop/anaconda/.
 Arduino. http://arduino.cc/
 ARM mBed. http://developer.mbed.org/
 GlovePIE. http://glovepie.org/
 OpenCV. http://opencv.org/
 Python programming language. http://python.org/

