
	
	
	
	
	

SmartPills	
Project	 Report	

	
	
	

EECS	 149/249A	
Fall	 2014	

	
Joshua	 Goldberg	
Gil	 Lederman	

Vicenc	 Rubies	 Royo	
Parsa	 Mahmoudieh	

	

	
	
	

Project Introduction

The goal of our project was to create a smart pill
bottle that would enhance the user experience
surrounding medication adherence. The pill bottle
prototype that we developed is capable of measuring
the number of pills left in the bottle and it
automatically unlocks and opens when the prescribed
individual touches their finger to the fingerprint
scanner. It also communicates with an Android app
to display to the user the number of pills remaining as
well as other useful data.

Embedded System Architecture

Introduction

The scope of the mbed part of the architecture
includes controller logic, sampling and driving the
GT511C3 (fingerprint scanner), interfacing with the
ADXL345 (“smart” accelerometer), measuring the
load cell, commanding the micro-servo, and
communicating with the Android device.

Choice of high-level architecture and MBED-RTOS

Our initial task was to choose an architecture that
will allow us to concurrently perform the various
tasks involved. One of the main constraints was the
implementation of the communication with an
android device through the BLE (effectively, though
the UART). Rather than deal with asynchronous non-
blocking two-sided communication through the use
of UART interrupts and some buffers (or,
alternatively, through periodic polling as part as a
main controller loop), we chose to use a simpler
approach, reading/writing the UART in a blocking
manner. Of course, this is only a reasonable solution
if we are using threads, and so we chose to use the
mbed-rtos, which schedules threads for us, and in
addition provides safe communication mechanisms
between them in the form of queues (even useable
from interrupt context!). This allows us to completely
avoid using any other explicit locking mechanisms,
and make do with a single shared variable that is only
written to from two possible ISRs. There are other
“shared variables” of course, but they are all
initialized by the first thread on startup, and are
henceforth read-only.

High-level architecture

While the system has a few auxiliary threads, there
are a total of three “active objects”, that is, threads
that are encapsulated in a subclass of a class called

‘FsmThread’, each with its own input queue and an
internal state, and a common implementation of
FsmThread::run() method that blocks on the input
queue until there is a message, and then proceeds to
dispatch it to a virtual method fsm_handler, which
each individual FSM subclass implements on its own.
These are:

ControllerFsm

This is the main state machine, implementing the
FSM chart seen in Figure 1 (not including commands
from the Android, which do not move the Controller
to a new state under normal operation):

Figure 1. Deterministic Finite State Machine

The important observation is that the software only
samples the load cell (effectively detecting the
number of pills) some time after the bottle has
become “inactive”, that is, the accelerometer reports
it has stopped moving and is not tilted.

AndroidFsm

The Android FsmThread is relatively simple. All it
does is wait for events from the other FsmThreads
(controller, scanner, or some admin debug provider
thread), and when it receives one, it translates it into
a matching Android-MBED protocol message (See
Android communication section) and sends it.
We will mention here that there is an extra thread, not
an FsmThread (since it has no input queue and listens
to no “internal” events), called AndroidSerial, which
does a blocking read on the BLE UART. When it
received a valid message from the Android, it
translates it to a matching FSM event, and injects a
message into the system, basically pushing a message
into either ControllerFsm or ScannerFsm queues.

ScannerFsm

This is the Fingerprint scanner FSM. It is mostly
superfluous; most of its functions might as well have
been implemented in the ControllerFsm in a non-
blocking manner. It has only one truly blocking
procedure, enrolling a new fingerprint (we’ve made
the identifying process event-based, with the help of
a periodic timer, in order to allow for cancellation in
the middle of the identification process), and we
dedicate a thread to it mostly for “legacy” reasons, its
not that complicated to implement the enrollment
asynchronously and forego the thread here.
We’ve used a very useful mbed library for interfacing
with the GT511C3, originally created by Toshihisa T.

Other “passive” components

Here we list objects that interface with various
scanners and actuators, but are not “active”, have no
thread context of themselves, and their methods are
strictly non-blocking.

LoadCell

The LoadCell object is used to sample the Load Cell,
save a history of sampled values, and saves
calibration values. To solve the problem of counting
how many pills are in the container, we had to first
solve the problem of accurately measuring the weight
inside the container. Once that was determined, we
could figure out the number of pills simply by
dividing the weight of all the pills inside the
container by the weight of each pill and then
rounding. Since the voltage outputted from the load
cell amplifier into the ADC port of the mbed varied
because of noise, we averaged 50,000 samples for
each measurement. We then measured the voltage for
different weights and verified that the load cell
reacted linearly to weight in the range we were
interested in.
After measuring the sensitivity of the load cell to
each pill, which did not change, we had to find the
bias, which varied a lot between adjustments of our
physical setup. We calibrate the pill bottle and record
this bias the first time it is turned on. In order to
calibrate it the user has to set the bottle empty on a
flat table and press calibrate for the mbed to record
the voltage bias on the load cell with zero pills. After
this measurement is taken, we were able to count the
number of pills in the bottle for great accuracy.

ServoLock

The ServoLock object simply sets a PWM value for
the pin connected to the micro-servo, a relatively
quick operation. A library by Simon Ford was used to
drive the PWM pin.

AdxlModule

This module manages the ADXL345 accelerometer.
The ADXL345 is a very sophisticated accelerometer.
It features a built-in controller that can be
programmed to detect activity, inactivity (with a
properly defined time period), free fall, and in
addition provide outgoing interrupts for these events.
We have been able to limit all ADXL345 handling to
a one-time register setup on startup. From there, the
ADXL345 provides us with two different interrupt
lines, detecting activity and inactivity (for a given
time period) in an interleaving fashion – that is, the
interrupts are never enabled together, an ACTIVE
interrupt must be present between every two
INACTIVE interrupts.
We originally used these two interrupts to feed events
into the system (mbed-rtos queues can be used from
within ISRs), but later switched to a different
approach. We re-discovered the fact that edge
conditions tend to be fragile and prone to
deadlocking. Instead of injecting a single ACTIVE/
INACTIVE event, we used the respective ISRs to set
a shared variable AdxlModule::mIsActive, and added
a periodic ticker interrupt to the ControllerFsm,
which explicitly checked the shared variable to detect
and execute ACTIVE/INACTIVE transitions.
We used a library here which mostly took care of the
SPI interface, created by Aaron Berk.

Android Architecture and Communication

Introduction

It was necessary to write an Android application in
order to enable communication between the user and
the bottle. Some of the important features that needed
to be part of the application included a way for the
user to enroll his/her fingerprint, a way to set the pill
weight, requests to (re)calibrate the bottle, etc. To
achieve all of this, three things were necessary: first,
to find a way to enable communication between the
mbed and Android, second, to design a
communication standard for the messages sent to and
from the Android and the mbed, and, finally, to
create a user friendly UI for the Android application.

Enabling Bluetooth Communication

In order for two devices to communicate over
Bluetooth two basic things must happen: first, the
devices must pair and then they must connect. To
achieve this, the “Bluetooth Chat” sample code
provided in the Android Eclipse IDE was modified.
This code was already functional, so most of the
features that we needed for communication were
already present. In summary, the program uses
threads that take care of all the steps from
pairing, all the way to sending and
receiving data. For the purposes of our
project the “ConnectedThread” was the
only thread that needed modification. This
thread takes care of sending arrays of
bytes from the Android to the mbed and
continuously listens for incoming data by
keeping track of an inputStream
associated with the Bluetooth socket.
Once data arrives it is then passed onto a
buffer, which is in turn used to retrieve the
information and read messages.

From the mbed side, Bluetooth
communication is very similar, albeit
easier. Given that the BlueSMiRF
Bluetooth module is accessed physically
via UART from the microcontroller, there is no need
for the pairing or connecting steps. By simply
interconnecting the Rx and Tx lines of the Bluetooth
to the Tx and Rx lines of the mbed, respectively, one
can regard the connection as being equivalent to the
usual serial connection between the computer and the
mbed via USB.

Finally, the Bluetooth module can be in one of two
modes: command mode and data mode. In command
mode, inputs to the module are treated as commands
that serve to modify configuration parameters such as
baud rate (9600 for our project), Pin number, Power
modes etc. In Data mode, the BlueSMiRF simply acts
as a transparent data gateway for information
exchange. In the context of our project, command
mode was only used to set the baud rate, and data
mode was used virtually all of the time.

Communication Standards

An important feature for the project was the necessity
to read and write messages in order to exchange
information between devices. More important was
the necessity to establish a standard for those
messages. In that regard, messages were encoded as a
series of bytes representing a header, a type, a length
and a payload. The header bytes are merely used so

that each device can discern between incoming
messages and other incoming data. The type bytes
simply hold information regarding what type of
message is being sent or received. The length bytes
contain the length (in bytes) of the payload, and the
payload bytes (always a multiple of 4) contain the
encoded information, which can only be decoded
properly if the associated message type is known.
Table 1 contains the messages, their structure, and
function.

Table 1. Messages and their information

The Android application can receive History
messages but the code needed for interpreting the
payload, although straightforward, has not yet been
implemented due to time constraints.

Each message is in fact a child of the parent class
MessageH.java, which contains all the fields (header,
type, length and payload) and methods necessary for
converting a message into an array of bytes or to
translate an array of bytes into a message. Using the
MessageH class made it very easy to add additional
messages.

User Interface

For the user interface a simple scheme was used
using the Android ViewFlipper layout. This Android
layout allows switching between screens containing
different information, buttons, etc. When the user
first enters the application he is shown a screen
containing three buttons: Connect, Help and About.
For the project, only the “Connect” button was
implemented since it was the only crucial one. Once
the user presses “Connect” the program starts an
Intent to try to connect to the bottle via Bluetooth.
Once the bottle has been connected, the user is

prompted to a new screen containing buttons and a
text view. The text view updates the user on the
number of pills in the bottle (while connected) as
pills are added or removed. The buttons on the screen
are used to calibrate the bottle, set the weight of the
pills, get the history of pill usage over time, unlock
the bottle, disconnect the application from the phone,
and enroll a fingerprint to the scanner. In particular,
this last button prompts to another set of screens that
guide the user through the process of enrolling his or
her fingerprint.

Hardware Design

Electrical Design

The load cell that we bought is effectively a
Wheatstone bridge of strain gauges that has two leads
with a linearly increasing differential voltage. An
instrumentation amplifier was designed and
implemented between the load cell and the ADC of
the mbed in order to amplify this differential voltage
by a factor of 300 to vary between 0 and 3.3V by 48
millivolts per gram. This equates to a variation of
about 45 ADC units per pill, which is plenty in order
to measure individual pills.

Mechanical Design

SolidWorks was used to develop CAD models for the
bottle. These models were then 3D printed and
assembled together into the final prototype. We
developed an outer cylindrical shell that holds a
micro-servo attached to a lid, as well as the
fingerprint sensor. The inner cylinder holds the pills
and is attached to the floating end of the load cell.
The other end of the load cell is fixed to the base of
the assembly. This whole structure was then attached
to the top of two plates, separated by four pillars.
Between the two plates is where all the circuitry
resides. See Figure 2 for the entire CAD model of the
design.

Figure 2. CAD Model of SmartPills

Sources of Error

One major source of error in counting the number of
pills was that pills coming from the same pill bottle
do not all weigh the same. We found this by
measuring the pills with a precise balance and
observing a difference in their weights. There was
also a lot of parasitic capacitance and inductance in
our module, which changed our voltage
measurements and also sometimes caused multiple
components to malfunction. This was due to the
whole pill bottle module being very compact. There
was one small breadboard and many wires connected
to the sensors, batteries, mbed, actuators, and
bluetooth module that were cramped and looped
together without being shielded.
Other minor sources of error include temperature
variations which could change the sensitivity and or
bias of the load cell. Also, attempting to take
measurements of the load cell on a non-level table is
another source of error. We also found that the
fingerprint sensor did not reliably identify the user’s
finger with every press.

Conclusion

We have learned many things from this project. We
discovered that components working separately does
not guarantee that they will still work once they are
all integrated together. We also found that noise
sources are a very big issue especially for analog
measurements and they must be dealt with in the
correct manner to avoid failure. We also found proper
and formal modeling of the system very helpful in
our project for achieving a working bug free system.
Formal modeling syntax was also very useful when
communicating amongst the team as we designed our
system because it was a standard vernacular that we
all understood. For future iterations of our project we
would have better wiring and shielding to cut down
on system noise. We would also use a more reliable
fingerprint sensor and we would design a PCB for all
of the components in order to make a smaller bottle.
There is also much work that can be done to the user
interface of the Android app to enhance the user
experience when using SmartPills.

All code available at:
https://github.com/lederg/ibottle

Video available at:
http://youtu.be/ZpQqOkrph1s

